亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

這本書是為那些有一些機器學習和深度學習的理論知識,并想深入應用機器學習的人準備的。這本書沒有解釋算法,而是更側重于如何以及應該用什么來解決機器學習和深度學習問題。如果你正在尋找純粹的基礎知識,這本書不適合你。如果你正在尋找接近機器學習問題的指導,這本書是為你準備的。喝杯咖啡,在筆記本電腦/工作站里編寫代碼時,最好能讀讀這本書。

目錄內容:

  • 搭建工作環境
  • 監督學習與非監督學習 ——交叉驗證 ——評價指標
  • 安排機器學習項目
  • 接近分類變量 ——特征工程 ——特征選擇 ——Hyperparameter優化
  • 圖像分類和分割
  • 文本分類/回歸
  • 集成和堆疊
  • 可復現代碼和模型服務

地址: //github.com/abhishekkrthakur/approachingalmost

付費5元查看完整內容

相關內容

學習使用Python分析數據和預測結果的更簡單和更有效的方法

Python機器學習教程展示了通過關注兩個核心機器學習算法家族來成功分析數據,本書能夠提供工作機制的完整描述,以及使用特定的、可破解的代碼來說明機制的示例。算法用簡單的術語解釋,沒有復雜的數學,并使用Python應用,指導算法選擇,數據準備,并在實踐中使用訓練過的模型。您將學習一套核心的Python編程技術,各種構建預測模型的方法,以及如何測量每個模型的性能,以確保使用正確的模型。關于線性回歸和集成方法的章節深入研究了每種算法,你可以使用書中的示例代碼來開發你自己的數據分析解決方案。

機器學習算法是數據分析和可視化的核心。在過去,這些方法需要深厚的數學和統計學背景,通常需要結合專門的R編程語言。這本書演示了機器學習可以如何實現使用更廣泛的使用和可訪問的Python編程語言。

使用線性和集成算法族預測結果

建立可以解決一系列簡單和復雜問題的預測模型

使用Python應用核心機器學習算法

直接使用示例代碼構建自定義解決方案

機器學習不需要復雜和高度專業化。Python使用了更簡單、有效和經過良好測試的方法,使這項技術更容易為更廣泛的受眾所接受。Python中的機器學習將向您展示如何做到這一點,而不需要廣泛的數學或統計背景。

付費5元查看完整內容

《Python機器學習經典實例(影印版 英文版)》這本實用指南提供了近200則完整的攻略,可幫助你解決日常工作中可能遇到的機器學習難題。如果你熟悉Python以及包括pandas和scikit-learn在內的庫,那么解決一些特定問題將不在話下,比如數據加載、文本處理、數值數據、模型選擇、降維以及諸多其他主題。

  每則攻略中都包含代碼,你可以將其復制并粘貼到實驗數據集中,以確保代碼的確有效。你可以插入、組合、修改這些代碼,從而協助構建你自己的應用程序。攻略中還包括相關的討論,對解決方案給出了解釋并提供有意義的上下文。

  《Python機器學習經典實例(影印版 英文版)》在理論和概念之外提供了構造實用機器學習應用所需的具體細節。

//www.oreilly.com/library/view/machine-learning-with/9781491989371/

付費5元查看完整內容

本書解釋了數據科學中至關重要的統計學概念,介紹如何將各種統計方法應用于數據科學。作者以易于理解、瀏覽和參考的方式,引出統計學中與數據科學相關的關鍵概念;解釋各統計學概念在數據科學中的重要性及有用程度,并給出原因。

統計方法是數據科學的關鍵部分,但很少有數據科學家有任何正式的統計培訓。關于基本統計的課程和書籍很少從數據科學的角度涵蓋這個主題。這本實用指南解釋了如何將各種統計方法應用到數據科學中,告訴你如何避免它們被誤用,并就什么是重要的、什么是不重要的給出建議。

許多數據科學資源包含了統計方法,但缺乏更深層次的統計視角。如果您熟悉R編程語言,并且對統計學有一定的了解,那么本文的快速引用將以一種可訪問、可讀的格式填補空白。

通過這本書,你會學到:

  • 為什么探索性數據分析是數據科學的一個關鍵的初步步驟
  • 隨機抽樣如何在大數據的情況下減少偏差并產生更高質量的數據集
  • 實驗設計的原則如何為問題提供明確的答案
  • 如何使用回歸估計結果和檢測異常
  • 用于預測記錄所屬類別的關鍵分類技術
  • 從數據中“學習”的統計機器學習方法
  • 從無標記數據中提取意義的無監督學習方法

//www.oreilly.com/library/view/practical-statistics-for/9781491952955/

付費5元查看完整內容

機器學習簡明指南,不可錯過!

A Machine Learning Primer

亞馬遜研究科學家Mihail Eric關于機器學習實踐重要經驗。包括監督學習、機器學習實踐、無監督學習以及深度學習。具體為:

監督學習

  • 線性回歸
  • 邏輯回歸
  • 樸素貝葉斯
  • 支持向量機
  • 決策樹
  • K-近鄰

機器學習實踐

  • 偏差-方差權衡
  • 如何選擇模型
  • 如何選擇特征
  • 正則化你的模型
  • 模型集成
  • 評價指標

無監督學習

  • 市場籃子分析
  • K均值聚類
  • 主成分分析

深度學習

  • 前向神經網絡
  • 神經網絡實踐
  • 卷積神經網絡
  • 循環神經網絡
付費5元查看完整內容

?介紹

這本書在保持非常務實的教導和結果導向付出很大的精力。構建聊天機器人不只是完成一個教程或遵循幾個步驟,它本身就是一種技能。這本書肯定不會用大量的文本和過程讓你感到無聊;相反,它采用的是邊做邊學的方法。到目前為止,在你的生活中,你肯定至少使用過一個聊天機器人。無論你是不是一個程序員,一旦你瀏覽這本書,你會發現構建模塊的聊天機器人,所有的奧秘將被揭開。建立聊天機器人可能看起來很困難,但這本書將讓你使它如此容易。我們的大腦不是用來直接處理復雜概念的;相反,我們一步一步地學習。當你讀這本書的時候,從第一章到最后一章,你會發現事情的進展是多么的清晰。雖然你可以直接翻到任何一章,但我強烈建議你從第一章開始,因為它肯定會支持你的想法。這本書就像一個網絡系列,你在讀完一章之后就無法抗拒下一章的誘惑。在閱讀完這本書后,你所接觸到的任何聊天機器人都會在你的腦海中形成一幅關于聊天機器人內部是如何設計和構建的畫面。

這本書適合誰?

這本書將作為學習與聊天機器人相關的概念和學習如何建立他們的一個完整的資源。那些將會發現這本書有用的包括: Python web開發人員希望擴大他們的知識或職業到聊天機器人開發。 學生和有抱負的程序員想獲得一種新的技能通過親身體驗展示的東西,自然語言愛好者希望從頭開始學習。 企業家如何構建一個聊天機器人的偉大的想法,但沒有足夠的技術關于如何制作聊天機器人的可行性信息。 產品/工程經理計劃與聊天機器人相關項目。

如何使用這本書?

請記住,這本書的寫作風格和其他書不一樣。讀這本書的時候要記住,一旦你完成了這本書,你就可以自己建造一個聊天機器人,或者教會別人如何建造一個聊天機器人。在像閱讀其他書籍一樣閱讀這本書之前,務必記住以下幾點:

  • 這本書涵蓋了構建聊天機器人所需的幾乎所有內容,而不是現有內容。
  • 這本書是關于花更多的時間在你的系統上做事情的,這本書就在你身邊。確保您執行每個代碼片段并嘗試編寫代碼;不要復制粘貼。
  • 一定要按照書中的步驟去做;如果你不理解一些事情,不要擔心。你將在本章的后面部分了解到。
  • 可以使用本書所提供的源代碼及Jupyter NoteBook作為參考。

內容概要

  • Chapter 1: 在本章中,你將從商業和開發人員的角度了解與聊天機器人相關的事情。這一章為我們熟悉chatbots概念并將其轉換為代碼奠定了基礎。希望在本章結束時,你會明白為什么你一定要為自己或你的公司創建一個聊天機器人。
  • Chapter 2: 在本章中會涉及聊天機器人的自然語言處理,你將學習到聊天機器人需要NLP時應該使用哪些工具和方法。這一章不僅教你在NLP的方法,而且還采取實際的例子和演示與編碼的例子。本章還討論了為什么使用特定的NLP方法可能需要在聊天機器人。注意,NLP本身就是一種技能。
  • Chapter 3: 在本章中,你將學習如何使用像Dialogflow這樣的工具以一種友好而簡單的方式構建聊天機器人。如果你不是程序員,你肯定會喜歡它,因為它幾乎不需要編程技能。
  • Chapter 4:在本章中,你將學習如何以人們想要的方式構建聊天機器人。標題說的很艱難,但一旦你完成了前一章,你會想要更多,因為這一章將教如何建立內部聊天機器人從零開始,以及如何使用機器學習算法訓練聊天機器人。
  • Chapter 5:在本章中,部署你的聊天機器人純粹是設計給你的聊天機器人應用一個最后的推動。當你經歷了創建聊天機器人的簡單和艱難的過程后,你肯定不想把它留給自己。你將學習如何展示你的聊天機器人到世界使用Facebook和Slack,最后,整合他們在你自己的網站。
付費5元查看完整內容

有興趣的數據科學專業人士可以通過本書學習Scikit-Learn圖書館以及機器學習的基本知識。本書結合了Anaconda Python發行版和流行的Scikit-Learn庫,演示了廣泛的有監督和無監督機器學習算法。通過用Python編寫的清晰示例,您可以在家里自己的機器上試用和試驗機器學習的原理。

所有的應用數學和編程技能需要掌握的內容,在這本書中涵蓋。不需要深入的面向對象編程知識,因為工作和完整的例子被提供和解釋。必要時,編碼示例是深入和復雜的。它們也簡潔、準確、完整,補充了介紹的機器學習概念。使用示例有助于建立必要的技能,以理解和應用復雜的機器學習算法。

對于那些在機器學習方面追求職業生涯的人來說,Scikit-Learn機器學習應用手冊是一個很好的起點。學習這本書的學生將學習基本知識,這是勝任工作的先決條件。讀者將接觸到專門為數據科學專業人員設計的蟒蛇分布,并將在流行的Scikit-Learn庫中構建技能,該庫是Python世界中許多機器學習應用程序的基礎。

你將學習

  • 使用Scikit-Learn中常見的簡單和復雜數據集
  • 將數據操作為向量和矩陣,以進行算法處理
  • 熟悉數據科學中使用的蟒蛇分布
  • 應用帶有分類器、回歸器和降維的機器學習
  • 優化算法并為每個數據集找到最佳算法
  • 從CSV、JSON、Numpy和panda格式加載數據并保存為這些格式

這本書是給誰的

  • 有抱負的數據科學家渴望通過掌握底層的基礎知識進入機器學習領域,而這些基礎知識有時在急于提高生產力的過程中被忽略了。一些面向對象編程的知識和非常基本的線性代數應用將使學習更容易,盡管任何人都可以從這本書獲益。
付費5元查看完整內容

隨著機器學習越來越多地被用于發現模式、進行分析和做出決策——投資于吸引更多的利益相關者加入是至關重要的。這本關于機器學習中的Python項目的書試圖做到這一點:為今天和明天的開發人員提供工具,他們可以使用這些工具更好地理解、評估和塑造機器學習,以幫助確保它為我們所有人服務。

如果你還沒有Python編程環境,這本書將為你提供一個,然后在“機器學習導論”一章中為你提供一個機器學習的概念理解。接下來是三個Python機器學習項目。它們將幫助你創建一個機器學習分類器,建立一個神經網絡來識別手寫數字,并通過為Atari構建一個機器人來給你一個深度強化學習的背景知識。

Python機器學習項目

  1. 前言
  2. 設置Python編程環境 3.機器學習入門
  3. 如何用Scikitlearn在Python中構建機器學習分類器
  4. 如何建立基于Tensorflow的神經網絡識別手寫數字
  5. 深度強化學習的偏差-方差: 如何用OpenAI Gym為Atari構建一個機器人

付費5元查看完整內容

概率圖模型是機器學習中的一種技術,它使用圖論的概念來簡明地表示和最佳地預測數據問題中的值。

圖模型為我們提供了在數據中發現復雜模式的技術,廣泛應用于語音識別、信息提取、圖像分割和基因調控網絡建模等領域。

這本書從概率論和圖論的基礎開始,然后繼續討論各種模型和推理算法。所有不同類型的模型都將與代碼示例一起討論,以創建和修改它們,并在它們上運行不同的推理算法。有一整章是關于樸素貝葉斯模型和隱馬爾可夫模型的。這些模型已經通過實際例子進行了詳細的討論。

你會學到什么

  • 掌握概率論和圖論的基本知識
  • 使用馬爾可夫網絡
  • 實現貝葉斯網絡
  • 圖模型中的精確推理技術,如變量消除算法
  • 了解圖模型中的近似推理技術,如消息傳遞算法

圖模型中的示例算法 通過真實的例子來掌握樸素貝葉斯的細節 使用Python中的各種庫部署PGMs 獲得隱馬爾可夫模型的工作細節與現實世界的例子

詳細 概率圖模型是機器學習中的一種技術,它使用圖論的概念來簡潔地表示和最佳地預測數據問題中的值。在現實問題中,往往很難選擇合適的圖模型和合適的推理算法,這對計算時間和精度有很大的影響。因此,了解這些算法的工作細節是至關重要的。

這本書從概率論和圖論的基礎開始,然后繼續討論各種模型和推理算法。所有不同類型的模型都將與代碼示例一起討論,以創建和修改它們,并在它們上運行不同的推理算法。有一個完整的章節專門討論最廣泛使用的網絡樸素貝葉斯模型和隱馬爾可夫模型(HMMs)。這些模型已經通過實際例子進行了詳細的討論。

風格和方法 一個易于遵循的指南,幫助您理解概率圖模型使用簡單的例子和大量的代碼例子,重點放在更廣泛使用的模型。

付費5元查看完整內容

書名: Hands-On Machine Learning with Scikit-Learn and TensorFlow

主要內容:

這本書分為兩個部分。

第一部分,機器學習的基礎知識,涵蓋以下主題:

  • 什么是機器學習?它被試圖用來解決什么問題?機器學習系統的主要類別和基本概念是什么?
  • 典型的機器學習項目中的主要步驟。
  • 通過擬合數據來學習模型。
  • 優化成本函數(cost function)。
  • 零、前言
  • 處理,清洗和準備數據。
  • 選擇和設計特征。
  • 使用交叉驗證選擇一個模型并調整超參數。
  • 機器學習的主要挑戰,特別是欠擬合和過擬合(偏差和方差權衡)。
  • 對訓練數據進行降維以對抗 the curse of dimensionality(維度詛咒)
  • 最常見的學習算法:線性和多項式回歸, Logistic 回歸,k-最近鄰,支持向量機,決策 樹,隨機森林和集成方法。

第二部分,神經網絡和深度學習,包括以下主題:

  • 什么是神經網絡?它們有啥優勢?
  • 使用 TensorFlow 構建和訓練神經網絡。
  • 最重要的神經網絡架構:前饋神經網絡,卷積網絡,遞歸網絡,長期短期記憶網絡 (LSTM)和自動編碼器。
  • 訓練深度神經網絡的技巧。
  • 對于大數據集縮放神經網絡。
  • 強化學習。

第一部分主要基于 scikit-learn ,而第二部分則使用 TensorFlow 。 注意:不要太急于深入學習到核心知識:深度學習無疑是機器學習中最令人興奮的領域之 一,但是你應該首先掌握基礎知識。而且,大多數問題可以用較簡單的技術很好地解決(而 不需要深度學習),比如隨機森林和集成方法(我們會在第一部分進行討論)。如果你擁有 足夠的數據,計算能力和耐心,深度學習是最適合復雜的問題的,如圖像識別,語音識別或 自然語言處理。

付費5元查看完整內容
北京阿比特科技有限公司