We aim to improve upon the exploration of the general-purpose random walk Metropolis algorithm when the target has non-convex support $A \subset \mathbb{R}^d$, by reusing proposals in $A^c$ which would otherwise be rejected. The algorithm is Metropolis-class and under standard conditions the chain satisfies a strong law of large numbers and central limit theorem. Theoretical and numerical evidence of improved performance relative to random walk Metropolis are provided. Issues of implementation are discussed and numerical examples, including applications to global optimisation and rare event sampling, are presented.
Over the last decades, various "non-linear" MCMC methods have arisen. While appealing for their convergence speed and efficiency, their practical implementation and theoretical study remain challenging. In this paper, we introduce a non-linear generalization of the Metropolis-Hastings algorithm to a proposal that depends not only on the current state, but also on its law. We propose to simulate this dynamics as the mean field limit of a system of interacting particles, that can in turn itself be understood as a generalisation of the Metropolis-Hastings algorithm to a population of particles. Under the double limit in number of iterations and number of particles we prove that this algorithm converges. Then, we propose an efficient GPU implementation and illustrate its performance on various examples. The method is particularly stable on multimodal examples and converges faster than the classical methods.
We consider a new functional inequality controlling the rate of relative entropy decay for random walks, the interchange process and more general block-type dynamics for permutations. The inequality lies between the classical logarithmic Sobolev inequality and the modified logarithmic Sobolev inequality, roughly interpolating between the two as the size of the blocks grows. Our results suggest that the new inequality may have some advantages with respect to the latter well known inequalities when multi-particle processes are considered. We prove a strong form of tensorization for independent particles interacting through synchronous updates. Moreover, for block dynamics on permutations we compute the optimal constants in all mean field settings, namely whenever the rate of update of a block depends only on the size of the block. Along the way we establish the independence of the spectral gap on the number of particles for these mean field processes. As an application of our entropy inequalities we prove a new subadditivity estimate for permutations, which implies a sharp upper bound on the permanent of arbitrary matrices with nonnegative entries, thus resolving a well known conjecture.
In this article, the control problem of one section pneumatically actuated soft robotic arm is investigated in detail. To date, extensive prior work has been done in soft robotics kinematics and dynamics modeling. Proper controller designs can complement the modeling part since they are able to compensate other effects that have not been considered in the modeling, such as the model uncertainties, system parameter identification error, hysteresis, etc. In this paper, we explored different control approaches (kinematic control, PD+feedback linearization, passivity control, adaptive passivity control) and summarized the advantages and disadvantages of each controller. We further investigated the robot control problem in the practical scenarios when the sensor noise exists, actuator velocity measurement is not available, and the hysteresis effect is non-neglectable. Our simulation results indicated that the adaptive passivity control with sigma modification terms, along with a high-gain observer presents a better performance in comparison with other approaches. Although this paper mainly presented the simulation results of various controllers, the work will pave the way for practical implementation of soft robot control.
In this work we propose reduced order methods as a reliable strategy to efficiently solve parametrized optimal control problems governed by shallow waters equations in a solution tracking setting. The physical parametrized model we deal with is nonlinear and time dependent: this leads to very time consuming simulations which can be unbearable e.g. in a marine environmental monitoring plan application. Our aim is to show how reduced order modelling could help in studying different configurations and phenomena in a fast way. After building the optimality system, we rely on a POD-Galerkin reduction in order to solve the optimal control problem in a low dimensional reduced space. The presented theoretical framework is actually suited to general nonlinear time dependent optimal control problems. The proposed methodology is finally tested with a numerical experiment: the reduced optimal control problem governed by shallow waters equations reproduces the desired velocity and height profiles faster than the standard model, still remaining accurate.
We consider the subset selection problem for function $f$ with constraint bound $B$ that changes over time. Within the area of submodular optimization, various greedy approaches are commonly used. For dynamic environments we observe that the adaptive variants of these greedy approaches are not able to maintain their approximation quality. Investigating the recently introduced POMC Pareto optimization approach, we show that this algorithm efficiently computes a $\phi= (\alpha_f/2)(1-\frac{1}{e^{\alpha_f}})$-approximation, where $\alpha_f$ is the submodularity ratio of $f$, for each possible constraint bound $b \leq B$. Furthermore, we show that POMC is able to adapt its set of solutions quickly in the case that $B$ increases. Our experimental investigations for the influence maximization in social networks show the advantage of POMC over generalized greedy algorithms. We also consider EAMC, a new evolutionary algorithm with polynomial expected time guarantee to maintain $\phi$ approximation ratio, and NSGA-II with two different population sizes as advanced multi-objective optimization algorithm, to demonstrate their challenges in optimizing the maximum coverage problem. Our empirical analysis shows that, within the same number of evaluations, POMC is able to perform as good as NSGA-II under linear constraint, while EAMC performs significantly worse than all considered algorithms in most cases.
We provide a control-theoretic perspective on optimal tensor algorithms for minimizing a convex function in a finite-dimensional Euclidean space. Given a function $\Phi: \mathbb{R}^d \rightarrow \mathbb{R}$ that is convex and twice continuously differentiable, we study a closed-loop control system that is governed by the operators $\nabla \Phi$ and $\nabla^2 \Phi$ together with a feedback control law $\lambda(\cdot)$ satisfying the algebraic equation $(\lambda(t))^p\|\nabla\Phi(x(t))\|^{p-1} = \theta$ for some $\theta \in (0, 1)$. Our first contribution is to prove the existence and uniqueness of a local solution to this system via the Banach fixed-point theorem. We present a simple yet nontrivial Lyapunov function that allows us to establish the existence and uniqueness of a global solution under certain regularity conditions and analyze the convergence properties of trajectories. The rate of convergence is $O(1/t^{(3p+1)/2})$ in terms of objective function gap and $O(1/t^{3p})$ in terms of squared gradient norm. Our second contribution is to provide two algorithmic frameworks obtained from discretization of our continuous-time system, one of which generalizes the large-step A-HPE framework and the other of which leads to a new optimal $p$-th order tensor algorithm. While our discrete-time analysis can be seen as a simplification and generalization of~\citet{Monteiro-2013-Accelerated}, it is largely motivated by the aforementioned continuous-time analysis, demonstrating the fundamental role that the feedback control plays in optimal acceleration and the clear advantage that the continuous-time perspective brings to algorithmic design. A highlight of our analysis is that we show that all of the $p$-th order optimal tensor algorithms that we discuss minimize the squared gradient norm at a rate of $O(k^{-3p})$, which complements the recent analysis.
Exploration-exploitation is a powerful and practical tool in multi-agent learning (MAL), however, its effects are far from understood. To make progress in this direction, we study a smooth analogue of Q-learning. We start by showing that our learning model has strong theoretical justification as an optimal model for studying exploration-exploitation. Specifically, we prove that smooth Q-learning has bounded regret in arbitrary games for a cost model that explicitly captures the balance between game and exploration costs and that it always converges to the set of quantal-response equilibria (QRE), the standard solution concept for games under bounded rationality, in weighted potential games with heterogeneous learning agents. In our main task, we then turn to measure the effect of exploration in collective system performance. We characterize the geometry of the QRE surface in low-dimensional MAL systems and link our findings with catastrophe (bifurcation) theory. In particular, as the exploration hyperparameter evolves over-time, the system undergoes phase transitions where the number and stability of equilibria can change radically given an infinitesimal change to the exploration parameter. Based on this, we provide a formal theoretical treatment of how tuning the exploration parameter can provably lead to equilibrium selection with both positive as well as negative (and potentially unbounded) effects to system performance.
In this work, we consider the distributed optimization of non-smooth convex functions using a network of computing units. We investigate this problem under two regularity assumptions: (1) the Lipschitz continuity of the global objective function, and (2) the Lipschitz continuity of local individual functions. Under the local regularity assumption, we provide the first optimal first-order decentralized algorithm called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. A notable aspect of this result is that, for non-smooth functions, while the dominant term of the error is in $O(1/\sqrt{t})$, the structure of the communication network only impacts a second-order term in $O(1/t)$, where $t$ is time. In other words, the error due to limits in communication resources decreases at a fast rate even in the case of non-strongly-convex objective functions. Under the global regularity assumption, we provide a simple yet efficient algorithm called distributed randomized smoothing (DRS) based on a local smoothing of the objective function, and show that DRS is within a $d^{1/4}$ multiplicative factor of the optimal convergence rate, where $d$ is the underlying dimension.
Large margin nearest neighbor (LMNN) is a metric learner which optimizes the performance of the popular $k$NN classifier. However, its resulting metric relies on pre-selected target neighbors. In this paper, we address the feasibility of LMNN's optimization constraints regarding these target points, and introduce a mathematical measure to evaluate the size of the feasible region of the optimization problem. We enhance the optimization framework of LMNN by a weighting scheme which prefers data triplets which yield a larger feasible region. This increases the chances to obtain a good metric as the solution of LMNN's problem. We evaluate the performance of the resulting feasibility-based LMNN algorithm using synthetic and real datasets. The empirical results show an improved accuracy for different types of datasets in comparison to regular LMNN.
Discrete random structures are important tools in Bayesian nonparametrics and the resulting models have proven effective in density estimation, clustering, topic modeling and prediction, among others. In this paper, we consider nested processes and study the dependence structures they induce. Dependence ranges between homogeneity, corresponding to full exchangeability, and maximum heterogeneity, corresponding to (unconditional) independence across samples. The popular nested Dirichlet process is shown to degenerate to the fully exchangeable case when there are ties across samples at the observed or latent level. To overcome this drawback, inherent to nesting general discrete random measures, we introduce a novel class of latent nested processes. These are obtained by adding common and group-specific completely random measures and, then, normalising to yield dependent random probability measures. We provide results on the partition distributions induced by latent nested processes, and develop an Markov Chain Monte Carlo sampler for Bayesian inferences. A test for distributional homogeneity across groups is obtained as a by product. The results and their inferential implications are showcased on synthetic and real data.