亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the homogenization of the equation $-A(\frac{\cdot}{\varepsilon}):D^2 u_{\varepsilon} = f$ posed in a bounded convex domain $\Omega\subset \mathbb{R}^n$ subject to a Dirichlet boundary condition and the numerical approximation of the corresponding homogenized problem, where the measurable, uniformly elliptic, periodic and symmetric diffusion matrix $A$ is merely assumed to be essentially bounded and (if $n>2$) to satisfy the Cordes condition. In the first part, we show existence and uniqueness of an invariant measure by reducing to a Lax--Milgram-type problem, we obtain $L^2$-bounds for periodic problems in double-divergence-form, we prove homogenization under minimal regularity assumptions, and we generalize known corrector bounds and results on optimal convergence rates from the classical case of H\"{o}lder continuous coefficients to the present case. In the second part, we suggest and rigorously analyze an approximation scheme for the effective coefficient matrix and the solution to the homogenized problem based on a finite element method for the approximation of the invariant measure, and we demonstrate the performance of the scheme through numerical experiments.

相關內容

An inner-product Hilbert space formulation is defined over a domain of all permutations with ties upon the extended real line. We demonstrate this work to resolve the common first and second order biases found in the pervasive Kendall and Spearman non-parametric correlation estimators, while presenting as unbiased minimum variance (Gauss-Markov) estimators. We conclude by showing upon finite samples that a strictly sub-Gaussian probability distribution is to be preferred for the Kemeny $\tau_{\kappa}$ and $\rho_{\kappa}$ estimators, allowing for the construction of expected Wald test statistics which are analytically consistent with the Gauss-Markov properties upon finite samples.

We develop several statistical tests of the determinant of the diffusion coefficient of a stochastic differential equation, based on discrete observations on a time interval $[0,T]$ sampled with a time step $\Delta$. Our main contribution is to control the test Type I and Type II errors in a non asymptotic setting, i.e. when the number of observations and the time step are fixed. The test statistics are calculated from the process increments. In dimension 1, the density of the test statistic is explicit. In dimension 2, the test statistic has no explicit density but upper and lower bounds are proved. We also propose a multiple testing procedure in dimension greater than 2. Every test is proved to be of a given non-asymptotic level and separability conditions to control their power are also provided. A numerical study illustrates the properties of the tests for stochastic processes with known or estimated drifts.

This work proposes novel techniques for the efficient numerical simulation of parameterized, unsteady partial differential equations. Projection-based reduced order models (ROMs) such as the reduced basis method employ a (Petrov-)Galerkin projection onto a linear low-dimensional subspace. In unsteady applications, space-time reduced basis (ST-RB) methods have been developed to achieve a dimension reduction both in space and time, eliminating the computational burden of time marching schemes. However, nonaffine parameterizations dilute any computational speedup achievable by traditional ROMs. Computational efficiency can be recovered by linearizing the nonaffine operators via hyper-reduction, such as the empirical interpolation method in matrix form. In this work, we implement new hyper-reduction techniques explicitly tailored to deal with unsteady problems and embed them in a ST-RB framework. For each of the proposed methods, we develop a posteriori error bounds. We run numerical tests to compare the performance of the proposed ROMs against high-fidelity simulations, in which we combine the finite element method for space discretization on 3D geometries and the Backward Euler time integrator. In particular, we consider a heat equation and an unsteady Stokes equation. The numerical experiments demonstrate the accuracy and computational efficiency our methods retain with respect to the high-fidelity simulations.

In this paper, we investigate the convergence properties of the stochastic gradient descent (SGD) method and its variants, especially in training neural networks built from nonsmooth activation functions. We develop a novel framework that assigns different timescales to stepsizes for updating the momentum terms and variables, respectively. Under mild conditions, we prove the global convergence of our proposed framework in both single-timescale and two-timescale cases. We show that our proposed framework encompasses a wide range of well-known SGD-type methods, including heavy-ball SGD, SignSGD, Lion, normalized SGD and clipped SGD. Furthermore, when the objective function adopts a finite-sum formulation, we prove the convergence properties for these SGD-type methods based on our proposed framework. In particular, we prove that these SGD-type methods find the Clarke stationary points of the objective function with randomly chosen stepsizes and initial points under mild assumptions. Preliminary numerical experiments demonstrate the high efficiency of our analyzed SGD-type methods.

We consider a general nonsymmetric second-order linear elliptic PDE in the framework of the Lax-Milgram lemma. We formulate and analyze an adaptive finite element algorithm with arbitrary polynomial degree that steers the adaptive mesh-refinement and the inexact iterative solution of the arising linear systems. More precisely, the iterative solver employs, as an outer loop, the so-called Zarantonello iteration to symmetrize the system and, as an inner loop, a uniformly contractive algebraic solver, e.g., an optimally preconditioned conjugate gradient method or an optimal geometric multigrid algorithm. We prove that the proposed inexact adaptive iteratively symmetrized finite element method (AISFEM) leads to full linear convergence and, for sufficiently small adaptivity parameters, to optimal convergence rates with respect to the overall computational cost, i.e., the total computational time. Numerical experiments underline the theory.

We prove that in an approximate factor model for an $n$-dimensional vector of stationary time series the factor loadings estimated via Principal Components are asymptotically equivalent, as $n\to\infty$, to those estimated by Quasi Maximum Likelihood. Both estimators are, in turn, also asymptotically equivalent, as $n\to\infty$, to the unfeasible Ordinary Least Squares estimator we would have if the factors were observed. We also show that the usual sandwich form of the asymptotic covariance matrix of the Quasi Maximum Likelihood estimator is asymptotically equivalent to the simpler asymptotic covariance matrix of the unfeasible Ordinary Least Squares. This provides a simple way to estimate asymptotic confidence intervals for the Quasi Maximum Likelihood estimator without the need of estimating the Hessian and Fisher information matrices whose expressions are very complex. All our results hold in the general case in which the idiosyncratic components are cross-sectionally heteroskedastic as well as serially and cross-sectionally weakly correlated.

In an earlier paper (//doi.org/10.1137/21M1393315), the Switch Point Algorithm was developed for solving optimal control problems whose solutions are either singular or bang-bang or both singular and bang-bang, and which possess a finite number of jump discontinuities in an optimal control at the points in time where the solution structure changes. The class of control problems that were considered had a given initial condition, but no terminal constraint. The theory is now extended to include problems with both initial and terminal constraints, a structure that often arises in boundary-value problems. Substantial changes to the theory are needed to handle this more general setting. Nonetheless, the derivative of the cost with respect to a switch point is again the jump in the Hamiltonian at the switch point.

In this paper, we rewrite the Stokes eigenvalue problem as an Elliptic eigenvalue problem restricted to subspace, and introduce an abstract framework of solving abstract elliptic eigenvalue problem to give the WG scheme, error estimates and asymptotic lower bounds. Besides, we introduce a new stabilizer and several inequalities to prove GLB properties. Some numerical examples are provided to validate our theoretical analysis.

During recent years the interest of optimization and machine learning communities in high-probability convergence of stochastic optimization methods has been growing. One of the main reasons for this is that high-probability complexity bounds are more accurate and less studied than in-expectation ones. However, SOTA high-probability non-asymptotic convergence results are derived under strong assumptions such as the boundedness of the gradient noise variance or of the objective's gradient itself. In this paper, we propose several algorithms with high-probability convergence results under less restrictive assumptions. In particular, we derive new high-probability convergence results under the assumption that the gradient/operator noise has bounded central $\alpha$-th moment for $\alpha \in (1,2]$ in the following setups: (i) smooth non-convex / Polyak-Lojasiewicz / convex / strongly convex / quasi-strongly convex minimization problems, (ii) Lipschitz / star-cocoercive and monotone / quasi-strongly monotone variational inequalities. These results justify the usage of the considered methods for solving problems that do not fit standard functional classes studied in stochastic optimization.

This paper is concerned with the designing, analyzing and implementing linear and nonlinear discretization scheme for the distributed optimal control problem (OCP) with the Cahn-Hilliard (CH) equation as constrained. We propose three difference schemes to approximate and investigate the solution behaviour of the OCP for the CH equation. We present the convergence analysis of the proposed discretization. We verify our findings by presenting numerical experiments.

北京阿比特科技有限公司