Prompt-tuning has emerged as a promising method for adapting pre-trained models to downstream tasks or aligning with human preferences. Prompt learning is widely used in NLP but has limited applicability to RL due to the complex physical meaning and environment-specific information contained within RL prompts. These factors require supervised learning to imitate the demonstrations and may result in a loss of meaning after learning. Additionally, directly extending prompt-tuning approaches to RL is challenging because RL prompts guide agent behavior based on environmental modeling and analysis, rather than filling in missing information, making it unlikely that adjustments to the prompt format for downstream tasks, as in NLP, can yield significant improvements. In this work, we propose the Prompt-Tuning DT algorithm to address these challenges by using trajectory segments as prompts to guide RL agents in acquiring environmental information and optimizing prompts via black-box tuning to enhance their ability to contain more relevant information, thereby enabling agents to make better decisions. Our approach involves randomly sampling a Gaussian distribution to fine-tune the elements of the prompt trajectory and using preference ranking function to find the optimization direction, thereby providing more informative prompts and guiding the agent towards specific preferences in the target environment. Extensive experiments show that with only 0.03% of the parameters learned, Prompt-Tuning DT achieves comparable or even better performance than full-model fine-tuning in low-data scenarios. Our work contributes to the advancement of prompt-tuning approaches in RL, providing a promising direction for optimizing large RL agents for specific preference tasks.
We study few-shot reranking for multi-hop QA with open-domain questions. To alleviate the need for a large number of labeled question-document pairs for retriever training, we propose PromptRank, which relies on large language models prompting for multi-hop path reranking. PromptRank first constructs an instruction-based prompt that includes a candidate document path and then computes the relevance score between a given question and the path based on the conditional likelihood of the question given the path prompt according to a language model. PromptRank yields strong retrieval performance on HotpotQA with only 128 training examples compared to state-of-the-art methods trained on thousands of examples -- 73.6 recall@10 by PromptRank vs. 77.8 by PathRetriever and 77.5 by multi-hop dense retrieval. Code available at //github.com/mukhal/PromptRank
Finetuning a pretrained model has become a standard approach for training neural networks on novel tasks, resulting in fast convergence and improved performance. In this work, we study an alternative finetuning method, where instead of finetuning all the weights of the network, we only train a carefully chosen subset of layers, keeping the rest of the weights frozen at their initial (pretrained) values. We demonstrate that \emph{subset finetuning} (or SubTuning) often achieves accuracy comparable to full finetuning of the model, and even surpasses the performance of full finetuning when training data is scarce. Therefore, SubTuning allows deploying new tasks at minimal computational cost, while enjoying the benefits of finetuning the entire model. This yields a simple and effective method for multi-task learning, where different tasks do not interfere with one another, and yet share most of the resources at inference time. We demonstrate the efficiency of SubTuning across multiple tasks, using different network architectures and pretraining methods.
Recent studies have demonstrated that natural-language prompts can help to leverage the knowledge learned by pre-trained language models for the binary sentence-level sentiment classification task. Specifically, these methods utilize few-shot learning settings to fine-tune the sentiment classification model using manual or automatically generated prompts. However, the performance of these methods is sensitive to the perturbations of the utilized prompts. Furthermore, these methods depend on a few labeled instances for automatic prompt generation and prompt ranking. This study aims to find high-quality prompts for the given task in a zero-shot setting. Given a base prompt, our proposed approach automatically generates multiple prompts similar to the base prompt employing positional, reasoning, and paraphrasing techniques and then ranks the prompts using a novel metric. We empirically demonstrate that the top-ranked prompts are high-quality and significantly outperform the base prompt and the prompts generated using few-shot learning for the binary sentence-level sentiment classification task.
Large language models (LLMs) often contain misleading content, emphasizing the need to align them with human values to ensure secur AI systems. Reinforcement learning from human feedback (RLHF) has been employed to achieve this alignment by combining a reward model, typically based on Bradley-Terry paired comparison, with an RL algorithm such as Proximal Policy Optimization (PPO) to optimize LLM responses. However, RLHF exhibits complexity, instability, and sensitivity to hyperparameters. In this paper, we propose Preference Ranking Optimization (PRO) as an alternative to PPO for directly aligning LLMs with the Bradley-Terry comparison. PRO extends the pairwise Bradley-Terry comparison to accommodate preference rankings of any length. By iteratively contrasting the likelihood of generating responses, PRO instructs the LLM to prioritize the best response while progressively ranking the remaining responses. In this manner, PRO effectively transforms human alignment into aligning the probability ranking of $n$ responses generated by LLM with the preference ranking of humans towards these responses. Experiments have shown that PRO outperforms existing alignment algorithms, achieving comparable results to ChatGPT and human responses through automatic-based, reward-based, GPT-4, and human evaluations. Furthermore, we demonstrate that longer, more diverse, and higher-quality preference ranking sequences can consistently enhance the performance of human alignment.
Recommender systems play a crucial role in helping users discover information that aligns with their interests based on their past behaviors. However, developing personalized recommendation systems becomes challenging when historical records of user-item interactions are unavailable, leading to what is known as the system cold-start recommendation problem. This issue is particularly prominent in start-up businesses or platforms with insufficient user engagement history. Previous studies focus on user or item cold-start scenarios, where systems could make recommendations for new users or items but are still trained with historical user-item interactions in the same domain, which cannot solve our problem. To bridge the gap, our research introduces an innovative and effective approach, capitalizing on the capabilities of pre-trained language models. We transform the recommendation process into sentiment analysis of natural languages containing information of user profiles and item attributes, where the sentiment polarity is predicted with prompt learning. By harnessing the extensive knowledge housed within language models, the prediction can be made without historical user-item interaction records. A benchmark is also introduced to evaluate the proposed method under the cold-start setting, and the results demonstrate the effectiveness of our method. To the best of our knowledge, this is the first study to tackle the system cold-start recommendation problem. The benchmark and implementation of the method are available at //github.com/JacksonWuxs/PromptRec.
Perceptually Aligned Gradients (PAG) refer to an intriguing property observed in robust image classification models, wherein their input gradients align with human perception and pose semantic meanings. While this phenomenon has gained significant research attention, it was solely studied in the context of unimodal vision-only architectures. In this work, we extend the study of PAG to Vision-Language architectures, which form the foundations for diverse image-text tasks and applications. Through an adversarial robustification finetuning of CLIP, we demonstrate that robust Vision-Language models exhibit PAG in contrast to their vanilla counterparts. This work reveals the merits of CLIP with PAG (CLIPAG) in several vision-language generative tasks. Notably, we show that seamlessly integrating CLIPAG in a "plug-n-play" manner leads to substantial improvements in vision-language generative applications. Furthermore, leveraging its PAG property, CLIPAG enables text-to-image generation without any generative model, which typically requires huge generators.
We present prompt distribution learning for effectively adapting a pre-trained vision-language model to address downstream recognition tasks. Our method not only learns low-bias prompts from a few samples but also captures the distribution of diverse prompts to handle the varying visual representations. In this way, we provide high-quality task-related content for facilitating recognition. This prompt distribution learning is realized by an efficient approach that learns the output embeddings of prompts instead of the input embeddings. Thus, we can employ a Gaussian distribution to model them effectively and derive a surrogate loss for efficient training. Extensive experiments on 12 datasets demonstrate that our method consistently and significantly outperforms existing methods. For example, with 1 sample per category, it relatively improves the average result by 9.1% compared to human-crafted prompts.
Visual information extraction (VIE) has attracted considerable attention recently owing to its various advanced applications such as document understanding, automatic marking and intelligent education. Most existing works decoupled this problem into several independent sub-tasks of text spotting (text detection and recognition) and information extraction, which completely ignored the high correlation among them during optimization. In this paper, we propose a robust visual information extraction system (VIES) towards real-world scenarios, which is a unified end-to-end trainable framework for simultaneous text detection, recognition and information extraction by taking a single document image as input and outputting the structured information. Specifically, the information extraction branch collects abundant visual and semantic representations from text spotting for multimodal feature fusion and conversely, provides higher-level semantic clues to contribute to the optimization of text spotting. Moreover, regarding the shortage of public benchmarks, we construct a fully-annotated dataset called EPHOIE (//github.com/HCIILAB/EPHOIE), which is the first Chinese benchmark for both text spotting and visual information extraction. EPHOIE consists of 1,494 images of examination paper head with complex layouts and background, including a total of 15,771 Chinese handwritten or printed text instances. Compared with the state-of-the-art methods, our VIES shows significant superior performance on the EPHOIE dataset and achieves a 9.01% F-score gain on the widely used SROIE dataset under the end-to-end scenario.
Recently pre-trained language representation models such as BERT have shown great success when fine-tuned on downstream tasks including information retrieval (IR). However, pre-training objectives tailored for ad-hoc retrieval have not been well explored. In this paper, we propose Pre-training with Representative wOrds Prediction (PROP) for ad-hoc retrieval. PROP is inspired by the classical statistical language model for IR, specifically the query likelihood model, which assumes that the query is generated as the piece of text representative of the "ideal" document. Based on this idea, we construct the representative words prediction (ROP) task for pre-training. Given an input document, we sample a pair of word sets according to the document language model, where the set with higher likelihood is deemed as more representative of the document. We then pre-train the Transformer model to predict the pairwise preference between the two word sets, jointly with the Masked Language Model (MLM) objective. By further fine-tuning on a variety of representative downstream ad-hoc retrieval tasks, PROP achieves significant improvements over baselines without pre-training or with other pre-training methods. We also show that PROP can achieve exciting performance under both the zero- and low-resource IR settings. The code and pre-trained models are available at //github.com/Albert-Ma/PROP.
The goal of text ranking is to generate an ordered list of texts retrieved from a corpus in response to a query. Although the most common formulation of text ranking is search, instances of the task can also be found in many natural language processing applications. This survey provides an overview of text ranking with neural network architectures known as transformers, of which BERT is the best-known example. The combination of transformers and self-supervised pretraining has, without exaggeration, revolutionized the fields of natural language processing (NLP), information retrieval (IR), and beyond. In this survey, we provide a synthesis of existing work as a single point of entry for practitioners who wish to gain a better understanding of how to apply transformers to text ranking problems and researchers who wish to pursue work in this area. We cover a wide range of modern techniques, grouped into two high-level categories: transformer models that perform reranking in multi-stage ranking architectures and learned dense representations that attempt to perform ranking directly. There are two themes that pervade our survey: techniques for handling long documents, beyond the typical sentence-by-sentence processing approaches used in NLP, and techniques for addressing the tradeoff between effectiveness (result quality) and efficiency (query latency). Although transformer architectures and pretraining techniques are recent innovations, many aspects of how they are applied to text ranking are relatively well understood and represent mature techniques. However, there remain many open research questions, and thus in addition to laying out the foundations of pretrained transformers for text ranking, this survey also attempts to prognosticate where the field is heading.