亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We show that the problem of determining the feasibility of quadratic systems over $\mathbb{C}$, $\mathbb{R}$, and $\mathbb{Z}$ requires exponential time. This separates P and NP over these fields/rings in the BCSS model of computation.

相關內容

CC在計算復雜性方面表現突出。它的學科處于數學與計算機理論科學的交叉點,具有清晰的數學輪廓和嚴格的數學格式。官網鏈接: · FAST · MoDELS · 核化 · ·
2021 年 10 月 12 日

We consider the numerical solution of the real time equilibrium Dyson equation, which is used in calculations of the dynamical properties of quantum many-body systems. We show that this equation can be written as a system of coupled, nonlinear, convolutional Volterra integro-differential equations, for which the kernel depends self-consistently on the solution. As is typical in the numerical solution of Volterra-type equations, the computational bottleneck is the quadratic-scaling cost of history integration. However, the structure of the nonlinear Volterra integral operator precludes the use of standard fast algorithms. We propose a quasilinear-scaling FFT-based algorithm which respects the structure of the nonlinear integral operator. The resulting method can reach large propagation times, and is thus well-suited to explore quantum many-body phenomena at low energy scales. We demonstrate the solver with two standard model systems: the Bethe graph, and the Sachdev-Ye-Kitaev model.

Approximate linear programs (ALPs) are well-known models based on value function approximations (VFAs) to obtain policies and lower bounds on the optimal policy cost of discounted-cost Markov decision processes (MDPs). Formulating an ALP requires (i) basis functions, the linear combination of which defines the VFA, and (ii) a state-relevance distribution, which determines the relative importance of different states in the ALP objective for the purpose of minimizing VFA error. Both these choices are typically heuristic: basis function selection relies on domain knowledge while the state-relevance distribution is specified using the frequency of states visited by a heuristic policy. We propose a self-guided sequence of ALPs that embeds random basis functions obtained via inexpensive sampling and uses the known VFA from the previous iteration to guide VFA computation in the current iteration. Self-guided ALPs mitigate the need for domain knowledge during basis function selection as well as the impact of the initial choice of the state-relevance distribution, thus significantly reducing the ALP implementation burden. We establish high probability error bounds on the VFAs from this sequence and show that a worst-case measure of policy performance is improved. We find that these favorable implementation and theoretical properties translate to encouraging numerical results on perishable inventory control and options pricing applications, where self-guided ALP policies improve upon policies from problem-specific methods. More broadly, our research takes a meaningful step toward application-agnostic policies and bounds for MDPs.

In this paper, we construct a class of Mixed Generalized Multiscale Finite Element Methods for the approximation on a coarse grid for an elliptic problem in thin two-dimensional domains. We consider the elliptic equation with homogeneous boundary conditions on the domain walls. For reference solution of the problem, we use a Mixed Finite Element Method on a fine grid that resolves complex geometry on the grid level. To construct a lower dimensional model, we use the Mixed Generalized Multiscale Finite Element Method, which is based on some multiscale basis functions for velocity fields. The construction of the basis functions is based on the local snapshot space that takes all possible flows on the interface between coarse cells into account. In order to reduce the size of the snapshot space and obtain the multiscale approximation, we solve a local spectral problem to identify dominant modes in the snapshot space. We present a convergence analysis of the presented multiscale method. Numerical results are presented for two-dimensional problems in three testing geometries along with the errors associated to different numbers of the multiscale basis functions used for the velocity field. Numerical investigations are conducted for problems with homogeneous and heterogeneous properties respectively.

In this work, we show that solvers of elliptic boundary value problems in $d$ dimensions can be approximated to accuracy $\epsilon$ from only $\mathcal{O}\left(\log(N)\log^{d}(N / \epsilon)\right)$ matrix-vector products with carefully chosen vectors (right-hand sides). The solver is only accessed as a black box, and the underlying operator may be unknown and of an arbitrarily high order. Our algorithm (1) has complexity $\mathcal{O}\left(N\log^2(N)\log^{2d}(N / \epsilon)\right)$ and represents the solution operator as a sparse Cholesky factorization with $\mathcal{O}\left(N\log(N)\log^{d}(N / \epsilon)\right)$ nonzero entries, (2) allows for embarrassingly parallel evaluation of the solution operator and the computation of its log-determinant, (3) allows for $\mathcal{O}\left(\log(N)\log^{d}(N / \epsilon)\right)$ complexity computation of individual entries of the matrix representation of the solver that in turn enables its recompression to an $\mathcal{O}\left(N\log^{d}(N / \epsilon)\right)$ complexity representation. As a byproduct, our compression scheme produces a homogenized solution operator with near-optimal approximation accuracy. We include rigorous proofs of these results, and to the best of our knowledge, the proposed algorithm achieves the best trade-off between accuracy $\epsilon$ and the number of required matrix-vector products of the original solver.

Consider the rank-1 spiked model: $\bf{X}=\sqrt{\nu}\xi \bf{u}+ \bf{Z}$, where $\nu$ is the spike intensity, $\bf{u}\in\mathbb{S}^{k-1}$ is an unknown direction and $\xi\sim \mathcal{N}(0,1),\bf{Z}\sim \mathcal{N}(\bf{0},\bf{I})$. Motivated by recent advances in analog-to-digital conversion, we study the problem of recovering $\bf{u}\in \mathbb{S}^{k-1}$ from $n$ i.i.d. modulo-reduced measurements $\bf{Y}=[\bf{X}]\mod \Delta$, focusing on the high-dimensional regime ($k\gg 1$). We develop and analyze an algorithm that, for most directions $\bf{u}$ and $\nu=\mathrm{poly}(k)$, estimates $\bf{u}$ to high accuracy using $n=\mathrm{poly}(k)$ measurements, provided that $\Delta\gtrsim \sqrt{\log k}$. Up to constants, our algorithm accurately estimates $\bf{u}$ at the smallest possible $\Delta$ that allows (in an information-theoretic sense) to recover $\bf{X}$ from $\bf{Y}$. A key step in our analysis involves estimating the probability that a line segment of length $\approx\sqrt{\nu}$ in a random direction $\bf{u}$ passes near a point in the lattice $\Delta \mathbb{Z}^k$. Numerical experiments show that the developed algorithm performs well even in a non-asymptotic setting.

We give a number of approximation metatheorems for monotone maximization problems expressible in the first-order logic, in substantially more general settings than the previously known. We obtain * constant-factor approximation algorithm in any class of graphs with bounded expansion, * a QPTAS in any class with strongly sublinear separators, and * a PTAS in any fractionally treewidth-fragile class (which includes all common classes with strongly sublinear separators. Moreover, our tools also give an exact subexponential-time algorithm in any class with strongly sublinear separators.

Bonnet, Kim, Thomass\'{e}, and Watrigant (2020) introduced the twin-width of a graph. We show that the twin-width of an $n$-vertex graph is less than $(n+\sqrt{n\ln n}+\sqrt{n}+2\ln n)/2$, and the twin-width of an $m$-edge graph is less than $\sqrt{3m}+ m^{1/4} \sqrt{\ln m} / (4\cdot 3^{1/4}) + 3m^{1/4} / 2$. Conference graphs of order $n$ (when such graphs exist) have twin-width at least $(n-1)/2$, and we show that Paley graphs achieve this lower bound. We also show that the twin-width of the Erd\H{o}s-R\'{e}nyi random graph $G(n,p)$ with $1/n\leq p=p(n)\leq 1/2$ is larger than $2p(1-p)n - (2\sqrt{2}+\varepsilon)\sqrt{p(1-p)n\ln n}$ asymptotically almost surely for any positive $\varepsilon$. Lastly, we calculate the twin-width of random graphs $G(n,p)$ with $p\leq c/n$ for a constant $c<1$, determining the thresholds at which the twin-width jumps from $0$ to $1$ and from $1$ to $2$.

Let $\mathbf{X} = (X_i)_{1\leq i \leq n}$ be an i.i.d. sample of square-integrable variables in $\mathbb{R}^d$, \GB{with common expectation $\mu$ and covariance matrix $\Sigma$, both unknown.} We consider the problem of testing if $\mu$ is $\eta$-close to zero, i.e. $\|\mu\| \leq \eta $ against $\|\mu\| \geq (\eta + \delta)$; we also tackle the more general two-sample mean closeness (also known as {\em relevant difference}) testing problem. The aim of this paper is to obtain nonasymptotic upper and lower bounds on the minimal separation distance $\delta$ such that we can control both the Type I and Type II errors at a given level. The main technical tools are concentration inequalities, first for a suitable estimator of $\|\mu\|^2$ used a test statistic, and secondly for estimating the operator and Frobenius norms of $\Sigma$ coming into the quantiles of said test statistic. These properties are obtained for Gaussian and bounded distributions. A particular attention is given to the dependence in the pseudo-dimension $d_*$ of the distribution, defined as $d_* := \|\Sigma\|_2^2/\|\Sigma\|_\infty^2$. In particular, for $\eta=0$, the minimum separation distance is ${\Theta}( d_*^{\frac{1}{4}}\sqrt{\|\Sigma\|_\infty/n})$, in contrast with the minimax estimation distance for $\mu$, which is ${\Theta}(d_e^{\frac{1}{2}}\sqrt{\|\Sigma\|_\infty/n})$ (where $d_e:=\|\Sigma\|_1/\|\Sigma\|_\infty$). This generalizes a phenomenon spelled out in particular by Baraud (2002).

Like many other biological processes, calcium dynamics in neurons containing an endoplasmic reticulum are governed by diffusion-reaction equations on interface-separated domains. Interface conditions are typically described by systems of ordinary differential equations that provide fluxes across the interfaces. Using the calcium model as an example of this class of ODE-flux boundary interface problems, we prove the existence, uniqueness and boundedness of the solution by applying comparison theorem, fundamental solution of the parabolic operator and a strategy used in Picard's existence theorem. Then we propose and analyze an efficient implicit-explicit finite element scheme which is implicit for the parabolic operator and explicit for the nonlinear terms. We show that the stability does not depend on the spatial mesh size. Also the optimal convergence rate in $H^1$ norm is obtained. Numerical experiments illustrate the theoretical results.

In order to avoid the curse of dimensionality, frequently encountered in Big Data analysis, there was a vast development in the field of linear and nonlinear dimension reduction techniques in recent years. These techniques (sometimes referred to as manifold learning) assume that the scattered input data is lying on a lower dimensional manifold, thus the high dimensionality problem can be overcome by learning the lower dimensionality behavior. However, in real life applications, data is often very noisy. In this work, we propose a method to approximate $\mathcal{M}$ a $d$-dimensional $C^{m+1}$ smooth submanifold of $\mathbb{R}^n$ ($d \ll n$) based upon noisy scattered data points (i.e., a data cloud). We assume that the data points are located "near" the lower dimensional manifold and suggest a non-linear moving least-squares projection on an approximating $d$-dimensional manifold. Under some mild assumptions, the resulting approximant is shown to be infinitely smooth and of high approximation order (i.e., $O(h^{m+1})$, where $h$ is the fill distance and $m$ is the degree of the local polynomial approximation). The method presented here assumes no analytic knowledge of the approximated manifold and the approximation algorithm is linear in the large dimension $n$. Furthermore, the approximating manifold can serve as a framework to perform operations directly on the high dimensional data in a computationally efficient manner. This way, the preparatory step of dimension reduction, which induces distortions to the data, can be avoided altogether.

北京阿比特科技有限公司