We propose a path-guiding algorithm to be incorporated into the wavefront style of path tracers (WFPTs). As WFPTs are primarily implemented on graphics processing units (GPUs), the proposed method aims to leverage the capabilities of the GPUs and reduce the hierarchical data structure and memory usage typically required for such techniques. To achieve this, our algorithm only stores the radiant exitance on a single global sparse voxel octree (SVO) data structure. Probability density functions required to guide the rays are generated on-the-fly using this data structure. The proposed approach reduces the scene-related persistent memory requirements compared to other path-guiding techniques while producing similar or better results depending on scene characteristics. To our knowledge, our algorithm is the first one that incorporates path guiding into a WFPT.
Marine mammal communication is a complex field, hindered by the diversity of vocalizations and environmental factors. The Watkins Marine Mammal Sound Database (WMMD) constitutes a comprehensive labeled dataset employed in machine learning applications. Nevertheless, the methodologies for data preparation, preprocessing, and classification documented in the literature exhibit considerable variability and are typically not applied to the dataset in its entirety. This study initially undertakes a concise review of the state-of-the-art benchmarks pertaining to the dataset, with a particular focus on clarifying data preparation and preprocessing techniques. Subsequently, we explore the utilization of the Wavelet Scattering Transform (WST) and Mel spectrogram as preprocessing mechanisms for feature extraction. In this paper, we introduce \textbf{WhaleNet} (Wavelet Highly Adaptive Learning Ensemble Network), a sophisticated deep ensemble architecture for the classification of marine mammal vocalizations, leveraging both WST and Mel spectrogram for enhanced feature discrimination. By integrating the insights derived from WST and Mel representations, we achieved an improvement in classification accuracy by $8-10\%$ over existing architectures, corresponding to a classification accuracy of $97.61\%$.
Large Language Models (LLMs) have become proficient in addressing complex tasks by leveraging their extensive internal knowledge and reasoning capabilities. However, the black-box nature of these models complicates the task of explaining their decision-making processes. While recent advancements demonstrate the potential of leveraging LLMs to self-explain their predictions through natural language (NL) explanations, their explanations may not accurately reflect the LLMs' decision-making process due to a lack of fidelity optimization on the derived explanations. Measuring the fidelity of NL explanations is a challenging issue, as it is difficult to manipulate the input context to mask the semantics of these explanations. To this end, we introduce FaithLM to explain the decision of LLMs with NL explanations. Specifically, FaithLM designs a method for evaluating the fidelity of NL explanations by incorporating the contrary explanations to the query process. Moreover, FaithLM conducts an iterative process to improve the fidelity of derived explanations. Experiment results on three datasets from multiple domains demonstrate that FaithLM can significantly improve the fidelity of derived explanations, which also provides a better alignment with the ground-truth explanations.
Advances in neural computation have predominantly relied on the gradient backpropagation algorithm (BP). However, the recent shift towards non-stationary data modeling has highlighted the limitations of this heuristic, exposing that its adaptation capabilities are far from those seen in biological brains. Unlike BP, where weight updates are computed through a reverse error propagation path, Hebbian learning dynamics provide synaptic updates using only information within the layer itself. This has spurred interest in biologically plausible learning algorithms, hypothesized to overcome BP's shortcomings. In this context, Hinton recently introduced the Forward-Forward Algorithm (FFA), which employs local learning rules for each layer and has empirically proven its efficacy in multiple data modeling tasks. In this work we argue that when employing a squared Euclidean norm as a goodness function driving the local learning, the resulting FFA is equivalent to a neo-Hebbian Learning Rule. To verify this result, we compare the training behavior of FFA in analog networks with its Hebbian adaptation in spiking neural networks. Our experiments demonstrate that both versions of FFA produce similar accuracy and latent distributions. The findings herein reported provide empirical evidence linking biological learning rules with currently used training algorithms, thus paving the way towards extrapolating the positive outcomes from FFA to Hebbian learning rules. Simultaneously, our results imply that analog networks trained under FFA could be directly applied to neuromorphic computing, leading to reduced energy usage and increased computational speed.
Large Language Models (LLMs) have significantly advanced the field of information retrieval, particularly for reranking. Listwise LLM rerankers have showcased superior performance and generalizability compared to existing supervised approaches. However, conventional listwise LLM reranking methods lack efficiency as they provide ranking output in the form of a generated ordered sequence of candidate passage identifiers. Further, they are trained with the typical language modeling objective, which treats all ranking errors uniformly--potentially at the cost of misranking highly relevant passages. Addressing these limitations, we introduce FIRST, a novel listwise LLM reranking approach leveraging the output logits of the first generated identifier to directly obtain a ranked ordering of the candidates. Further, we incorporate a learning-to-rank loss during training, prioritizing ranking accuracy for the more relevant passages. Empirical results demonstrate that FIRST accelerates inference by 50% while maintaining a robust ranking performance with gains across the BEIR benchmark. Finally, to illustrate the practical effectiveness of listwise LLM rerankers, we investigate their application in providing relevance feedback for retrievers during inference. Our results show that LLM rerankers can provide a stronger distillation signal compared to cross-encoders, yielding substantial improvements in retriever recall after relevance feedback.
Large Language Models (LLMs) are trained on vast amounts of data, most of which is automatically scraped from the internet. This data includes encyclopedic documents that harbor a vast amount of general knowledge (e.g., Wikipedia) but also potentially overlap with benchmark datasets used for evaluating LLMs. Consequently, evaluating models on test splits that might have leaked into the training set is prone to misleading conclusions. To foster sound evaluation of language models, we introduce a new test dataset named RepLiQA, suited for question-answering and topic retrieval tasks. RepLiQA is a collection of five splits of test sets, four of which have not been released to the internet or exposed to LLM APIs prior to this publication. Each sample in RepLiQA comprises (1) a reference document crafted by a human annotator and depicting an imaginary scenario (e.g., a news article) absent from the internet; (2) a question about the document's topic; (3) a ground-truth answer derived directly from the information in the document; and (4) the paragraph extracted from the reference document containing the answer. As such, accurate answers can only be generated if a model can find relevant content within the provided document. We run a large-scale benchmark comprising several state-of-the-art LLMs to uncover differences in performance across models of various types and sizes in a context-conditional language modeling setting. Released splits of RepLiQA can be found here: //huggingface.co/datasets/ServiceNow/repliqa.
The growing popularity of Large Language Models has sparked interest in context compression for Large Language Models (LLMs). However, the performance of previous methods degrades dramatically as compression ratios increase, sometimes even falling to the closed-book level. This decline can be attributed to the loss of key information during the compression process. Our preliminary study supports this hypothesis, emphasizing the significance of retaining key information to maintain model performance under high compression ratios. As a result, we introduce Query-Guided Compressor (QGC), which leverages queries to guide the context compression process, effectively preserving key information within the compressed context. Additionally, we employ a dynamic compression strategy. We validate the effectiveness of our proposed QGC on the Question Answering task, including NaturalQuestions, TriviaQA, and HotpotQA datasets. Experimental results show that QGC can consistently perform well even at high compression ratios, which also offers significant benefits in terms of inference cost and throughput.
The Internet traffic data produced by the Internet of Things (IoT) devices are collected by Internet Service Providers (ISPs) and device manufacturers, and often shared with their third parties to maintain and enhance user services. Unfortunately, on-path adversaries could infer and fingerprint users' sensitive privacy information such as occupancy and user activities by analyzing these network traffic traces. While there's a growing body of literature on defending against this side-channel attack-malicious IoT traffic analytics (TA), there's currently no systematic method to compare and evaluate the comprehensiveness of these existing studies. To address this problem, we design a new low-cost, open-source system framework-IoT Traffic Exposure Monitoring Toolkit (ITEMTK) that enables people to comprehensively examine and validate prior attack models and their defending approaches. In particular, we also design a novel image-based attack capable of inferring sensitive user information, even when users employ the most robust preventative measures in their smart homes. Researchers could leverage our new image-based attack to systematize and understand the existing literature on IoT traffic analysis attacks and preventing studies. Our results show that current defending approaches are not sufficient to protect IoT device user privacy. IoT devices are significantly vulnerable to our new image-based user privacy inference attacks, posing a grave threat to IoT device user privacy. We also highlight potential future improvements to enhance the defending approaches. ITEMTK's flexibility allows other researchers for easy expansion by integrating new TA attack models and prevention methods to benchmark their future work.
Autonomous driving has achieved a significant milestone in research and development over the last decade. There is increasing interest in the field as the deployment of self-operating vehicles on roads promises safer and more ecologically friendly transportation systems. With the rise of computationally powerful artificial intelligence (AI) techniques, autonomous vehicles can sense their environment with high precision, make safe real-time decisions, and operate more reliably without human interventions. However, intelligent decision-making in autonomous cars is not generally understandable by humans in the current state of the art, and such deficiency hinders this technology from being socially acceptable. Hence, aside from making safe real-time decisions, the AI systems of autonomous vehicles also need to explain how these decisions are constructed in order to be regulatory compliant across many jurisdictions. Our study sheds a comprehensive light on developing explainable artificial intelligence (XAI) approaches for autonomous vehicles. In particular, we make the following contributions. First, we provide a thorough overview of the present gaps with respect to explanations in the state-of-the-art autonomous vehicle industry. We then show the taxonomy of explanations and explanation receivers in this field. Thirdly, we propose a framework for an architecture of end-to-end autonomous driving systems and justify the role of XAI in both debugging and regulating such systems. Finally, as future research directions, we provide a field guide on XAI approaches for autonomous driving that can improve operational safety and transparency towards achieving public approval by regulators, manufacturers, and all engaged stakeholders.
Graph Neural Networks (GNNs) are widely used for analyzing graph-structured data. Most GNN methods are highly sensitive to the quality of graph structures and usually require a perfect graph structure for learning informative embeddings. However, the pervasiveness of noise in graphs necessitates learning robust representations for real-world problems. To improve the robustness of GNN models, many studies have been proposed around the central concept of Graph Structure Learning (GSL), which aims to jointly learn an optimized graph structure and corresponding representations. Towards this end, in the presented survey, we broadly review recent progress of GSL methods for learning robust representations. Specifically, we first formulate a general paradigm of GSL, and then review state-of-the-art methods classified by how they model graph structures, followed by applications that incorporate the idea of GSL in other graph tasks. Finally, we point out some issues in current studies and discuss future directions.
Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.