The ResNet architecture has been widely adopted in deep learning due to its significant boost to performance through the use of simple skip connections, yet the underlying mechanisms leading to its success remain largely unknown. In this paper, we conduct a thorough empirical study of the ResNet architecture in classification tasks by linearizing its constituent residual blocks using Residual Jacobians and measuring their singular value decompositions. Our measurements reveal a process called Residual Alignment (RA) characterized by four properties: (RA1) intermediate representations of a given input are equispaced on a line, embedded in high dimensional space, as observed by Gai and Zhang [2021]; (RA2) top left and right singular vectors of Residual Jacobians align with each other and across different depths; (RA3) Residual Jacobians are at most rank C for fully-connected ResNets, where C is the number of classes; and (RA4) top singular values of Residual Jacobians scale inversely with depth. RA consistently occurs in models that generalize well, in both fully-connected and convolutional architectures, across various depths and widths, for varying numbers of classes, on all tested benchmark datasets, but ceases to occur once the skip connections are removed. It also provably occurs in a novel mathematical model we propose. This phenomenon reveals a strong alignment between residual branches of a ResNet (RA2+4), imparting a highly rigid geometric structure to the intermediate representations as they progress linearly through the network (RA1) up to the final layer, where they undergo Neural Collapse.
Large language models (LLMs) are recognized as systems that closely mimic aspects of human intelligence. This capability has attracted attention from the social science community, who see the potential in leveraging LLMs to replace human participants in experiments, thereby reducing research costs and complexity. In this paper, we introduce a framework for large language models personification, including a strategy for constructing virtual characters' life stories from the ground up, a Multi-Agent Cognitive Mechanism capable of simulating human cognitive processes, and a psychology-guided evaluation method to assess human simulations from both self and observational perspectives. Experimental results demonstrate that our constructed simulacra can produce personified responses that align with their target characters. Our work is a preliminary exploration which offers great potential in practical applications. All the code and datasets will be released, with the hope of inspiring further investigations.
Vulnerability to adversarial attacks is one of the principal hurdles to the adoption of deep learning in safety-critical applications. Despite significant efforts, both practical and theoretical, training deep learning models robust to adversarial attacks is still an open problem. In this paper, we analyse the geometry of adversarial attacks in the large-data, overparameterized limit for Bayesian Neural Networks (BNNs). We show that, in the limit, vulnerability to gradient-based attacks arises as a result of degeneracy in the data distribution, i.e., when the data lies on a lower-dimensional submanifold of the ambient space. As a direct consequence, we demonstrate that in this limit BNN posteriors are robust to gradient-based adversarial attacks. Crucially, we prove that the expected gradient of the loss with respect to the BNN posterior distribution is vanishing, even when each neural network sampled from the posterior is vulnerable to gradient-based attacks. Experimental results on the MNIST, Fashion MNIST, and half moons datasets, representing the finite data regime, with BNNs trained with Hamiltonian Monte Carlo and Variational Inference, support this line of arguments, showing that BNNs can display both high accuracy on clean data and robustness to both gradient-based and gradient-free based adversarial attacks.
By leveraging the underlying structures of the quadrotor dynamics, we propose multi-agent reinforcement learning frameworks to innovate the low-level control of a quadrotor, where independent agents operate cooperatively to achieve a common goal. While single-agent reinforcement learning has been successfully applied in quadrotor controls, training a large monolithic network is often data-intensive and time-consuming. Moreover, achieving agile yawing control remains a significant challenge due to the strongly coupled nature of the quadrotor dynamics. To address this, we decompose the quadrotor dynamics into translational and yawing components and assign collaborative reinforcement learning agents to each part to facilitate more efficient training. Additionally, we introduce regularization terms to mitigate steady-state errors and prevent excessive maneuvers. Benchmark studies, including sim-to-sim transfer verification, demonstrate that our proposed training schemes substantially improve the convergence rate of training, while enhancing flight control performance and stability compared to traditional single-agent approaches.
Although deep learning-based methods have shown great success in spatiotemporal predictive learning, the framework of those models is designed mainly by intuition. How to make spatiotemporal forecasting with theoretical guarantees is still a challenging issue. In this work, we tackle this problem by applying domain knowledge from the dynamical system to the framework design of deep learning models. An observer theory-guided deep learning architecture, called Spatiotemporal Observer, is designed for predictive learning of high dimensional data. The characteristics of the proposed framework are twofold: firstly, it provides the generalization error bound and convergence guarantee for spatiotemporal prediction; secondly, dynamical regularization is introduced to enable the model to learn system dynamics better during training. Further experimental results show that this framework could capture the spatiotemporal dynamics and make accurate predictions in both one-step-ahead and multi-step-ahead forecasting scenarios.
Knowledge graph embedding (KGE) is a increasingly popular technique that aims to represent entities and relations of knowledge graphs into low-dimensional semantic spaces for a wide spectrum of applications such as link prediction, knowledge reasoning and knowledge completion. In this paper, we provide a systematic review of existing KGE techniques based on representation spaces. Particularly, we build a fine-grained classification to categorise the models based on three mathematical perspectives of the representation spaces: (1) Algebraic perspective, (2) Geometric perspective, and (3) Analytical perspective. We introduce the rigorous definitions of fundamental mathematical spaces before diving into KGE models and their mathematical properties. We further discuss different KGE methods over the three categories, as well as summarise how spatial advantages work over different embedding needs. By collating the experimental results from downstream tasks, we also explore the advantages of mathematical space in different scenarios and the reasons behind them. We further state some promising research directions from a representation space perspective, with which we hope to inspire researchers to design their KGE models as well as their related applications with more consideration of their mathematical space properties.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
Influenced by the stunning success of deep learning in computer vision and language understanding, research in recommendation has shifted to inventing new recommender models based on neural networks. In recent years, we have witnessed significant progress in developing neural recommender models, which generalize and surpass traditional recommender models owing to the strong representation power of neural networks. In this survey paper, we conduct a systematic review on neural recommender models, aiming to summarize the field to facilitate future progress. Distinct from existing surveys that categorize existing methods based on the taxonomy of deep learning techniques, we instead summarize the field from the perspective of recommendation modeling, which could be more instructive to researchers and practitioners working on recommender systems. Specifically, we divide the work into three types based on the data they used for recommendation modeling: 1) collaborative filtering models, which leverage the key source of user-item interaction data; 2) content enriched models, which additionally utilize the side information associated with users and items, like user profile and item knowledge graph; and 3) context enriched models, which account for the contextual information associated with an interaction, such as time, location, and the past interactions. After reviewing representative works for each type, we finally discuss some promising directions in this field, including benchmarking recommender systems, graph reasoning based recommendation models, and explainable and fair recommendations for social good.
For deploying a deep learning model into production, it needs to be both accurate and compact to meet the latency and memory constraints. This usually results in a network that is deep (to ensure performance) and yet thin (to improve computational efficiency). In this paper, we propose an efficient method to train a deep thin network with a theoretic guarantee. Our method is motivated by model compression. It consists of three stages. In the first stage, we sufficiently widen the deep thin network and train it until convergence. In the second stage, we use this well-trained deep wide network to warm up (or initialize) the original deep thin network. This is achieved by letting the thin network imitate the immediate outputs of the wide network from layer to layer. In the last stage, we further fine tune this well initialized deep thin network. The theoretical guarantee is established by using mean field analysis, which shows the advantage of layerwise imitation over traditional training deep thin networks from scratch by backpropagation. We also conduct large-scale empirical experiments to validate our approach. By training with our method, ResNet50 can outperform ResNet101, and BERT_BASE can be comparable with BERT_LARGE, where both the latter models are trained via the standard training procedures as in the literature.
Since hardware resources are limited, the objective of training deep learning models is typically to maximize accuracy subject to the time and memory constraints of training and inference. We study the impact of model size in this setting, focusing on Transformer models for NLP tasks that are limited by compute: self-supervised pretraining and high-resource machine translation. We first show that even though smaller Transformer models execute faster per iteration, wider and deeper models converge in significantly fewer steps. Moreover, this acceleration in convergence typically outpaces the additional computational overhead of using larger models. Therefore, the most compute-efficient training strategy is to counterintuitively train extremely large models but stop after a small number of iterations. This leads to an apparent trade-off between the training efficiency of large Transformer models and the inference efficiency of small Transformer models. However, we show that large models are more robust to compression techniques such as quantization and pruning than small models. Consequently, one can get the best of both worlds: heavily compressed, large models achieve higher accuracy than lightly compressed, small models.
Deep learning has penetrated all aspects of our lives and brought us great convenience. However, the process of building a high-quality deep learning system for a specific task is not only time-consuming but also requires lots of resources and relies on human expertise, which hinders the development of deep learning in both industry and academia. To alleviate this problem, a growing number of research projects focus on automated machine learning (AutoML). In this paper, we provide a comprehensive and up-to-date study on the state-of-the-art AutoML. First, we introduce the AutoML techniques in details according to the machine learning pipeline. Then we summarize existing Neural Architecture Search (NAS) research, which is one of the most popular topics in AutoML. We also compare the models generated by NAS algorithms with those human-designed models. Finally, we present several open problems for future research.