亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we present a new antithetic multilevel Monte Carlo (MLMC) method for the estimation of expectations with respect to laws of diffusion processes that can be elliptic or hypo-elliptic. In particular, we consider the case where one has to resort to time discretization of the diffusion and numerical simulation of such schemes. Motivated by recent developments, we introduce a new MLMC estimator of expectations, which does not require simulation of intractable L\'evy areas but has a weak error of order 2 and achieves the optimal computational complexity. We then show how this approach can be used in the context of the filtering problem associated to partially observed diffusions with discrete time observations. We illustrate with numerical simulations that our new approaches provide efficiency gains for several problems relative to some existing methods.

相關內容

In this paper, we consider two challenging issues in reference-based super-resolution (RefSR) for smartphone, (i) how to choose a proper reference image, and (ii) how to learn RefSR in a self-supervised manner. Particularly, we propose a novel self-supervised learning approach for real-world RefSR from observations at dual and multiple camera zooms. Firstly, considering the popularity of multiple cameras in modern smartphones, the more zoomed (telephoto) image can be naturally leveraged as the reference to guide the super-resolution (SR) of the lesser zoomed (ultra-wide) image, which gives us a chance to learn a deep network that performs SR from the dual zoomed observations (DZSR). Secondly, for self-supervised learning of DZSR, we take the telephoto image instead of an additional high-resolution image as the supervision information, and select a center patch from it as the reference to super-resolve the corresponding ultra-wide image patch. To mitigate the effect of the misalignment between ultra-wide low-resolution (LR) patch and telephoto ground-truth (GT) image during training, we first adopt patch-based optical flow alignment and then design an auxiliary-LR to guide the deforming of the warped LR features. To generate visually pleasing results, we present local overlapped sliced Wasserstein loss to better represent the perceptual difference between GT and output in the feature space. During testing, DZSR can be directly deployed to super-solve the whole ultra-wide image with the reference of the telephoto image. In addition, we further take multiple zoomed observations to explore self-supervised RefSR, and present a progressive fusion scheme for the effective utilization of reference images. Experiments show that our methods achieve better quantitative and qualitative performance against state-of-the-arts. Codes are available at //github.com/cszhilu1998/SelfDZSR_PlusPlus.

In this paper, we propose an efficient and accurate streaming speech recognition model based on the FastConformer architecture. We adapted the FastConformer architecture for streaming applications through: (1) constraining both the look-ahead and past contexts in the encoder, and (2) introducing an activation caching mechanism to enable the non-autoregressive encoder to operate autoregressively during inference. The proposed model is thoughtfully designed in a way to eliminate the accuracy disparity between the train and inference time which is common for many streaming models. Furthermore, our proposed encoder works with various decoder configurations including Connectionist Temporal Classification (CTC) and RNN-Transducer (RNNT) decoders. Additionally, we introduced a hybrid CTC/RNNT architecture which utilizes a shared encoder with both a CTC and RNNT decoder to boost the accuracy and save computation. We evaluate the proposed model on LibriSpeech dataset and a multi-domain large scale dataset and demonstrate that it can achieve better accuracy with lower latency and inference time compared to a conventional buffered streaming model baseline. We also showed that training a model with multiple latencies can achieve better accuracy than single latency models while it enables us to support multiple latencies with a single model. Our experiments also showed the hybrid architecture would not only speedup the convergence of the CTC decoder but also improves the accuracy of streaming models compared to single decoder models.

In this paper, we introduce an alternative approach to enhancing Multi-Agent Reinforcement Learning (MARL) through the integration of domain knowledge and attention-based policy mechanisms. Our methodology focuses on the incorporation of domain-specific expertise into the learning process, which simplifies the development of collaborative behaviors. This approach aims to reduce the complexity and learning overhead typically associated with MARL by enabling agents to concentrate on essential aspects of complex tasks, thus optimizing the learning curve. The utilization of attention mechanisms plays a key role in our model. It allows for the effective processing of dynamic context data and nuanced agent interactions, leading to more refined decision-making. Applied in standard MARL scenarios, such as the Stanford Intelligent Systems Laboratory (SISL) Pursuit and Multi-Particle Environments (MPE) Simple Spread, our method has been shown to improve both learning efficiency and the effectiveness of collaborative behaviors. The results indicate that our attention-based approach can be a viable approach for improving the efficiency of MARL training process, integrating domain-specific knowledge at the action level.

In this paper we look at $k$-stroll, point-to-point orienteering, as well as the deadline TSP problem on graphs with bounded doubling dimension and bounded treewidth and present approximation schemes for them. Given a weighted graph $G=(V,E)$, start node $s\in V$, distances $d:E\rightarrow \mathbb{Q}^+$ and integer $k$. In the $k$-stroll problem the goal is to find a path starting at $s$ of minimum length that visits at least $k$ vertices. The dual problem to $k$-stroll is the rooted orienteering in which instead of $k$ we are given a budget $B$ and the goal is to find a walk of length at most $B$ starting at $s$ that visits as many vertices as possible. In the P2P orienteering we are given start and end nodes $s,t$ for the path. In the deadline TSP we are given a deadline $D(v)$ for each $v\in V$ and the goal is to find a walk starting at $s$ that visits as many vertices as possible before their deadline. The best approximation for rooted or P2P orienteering is $(2+\epsilon)$-approximation [12] and $O(\log n)$-approximation for deadline TSP [3]. There is no known approximation scheme for deadline TSP for any metric (not even trees). Our main result is the first approximation scheme for deadline TSP on metrics with bounded doubling dimension. To do so we first show if $G$ is a metric with doubling dimension $\kappa$ and aspect ratio $\Delta$, there is a $(1+\epsilon)$-approximation that runs in time $n^{O\left(\left(\log\Delta/\epsilon\right)^{2\kappa+1}\right)}$. We then extend these to obtain an approximation scheme for deadline TSP when the distances and deadlines are integer which runs in time $n^{O\left(\left(\log \Delta/\epsilon\right)^{2\kappa+2}\right)}$. For graphs with treewidth $\omega$ we show how to solve $k$-stroll and P2P orienteering exactly in polynomial time and a $(1+\epsilon)$-approximation for deadline TSP in time $n^{O((\omega\log\Delta/\epsilon)^2)}$.

In this paper, we present a novel approach that combines deep metric learning and synthetic data generation using diffusion models for out-of-distribution (OOD) detection. One popular approach for OOD detection is outlier exposure, where models are trained using a mixture of in-distribution (ID) samples and ``seen" OOD samples. For the OOD samples, the model is trained to minimize the KL divergence between the output probability and the uniform distribution while correctly classifying the in-distribution (ID) data. In this paper, we propose a label-mixup approach to generate synthetic OOD data using Denoising Diffusion Probabilistic Models (DDPMs). Additionally, we explore recent advancements in metric learning to train our models. In the experiments, we found that metric learning-based loss functions perform better than the softmax. Furthermore, the baseline models (including softmax, and metric learning) show a significant improvement when trained with the generated OOD data. Our approach outperforms strong baselines in conventional OOD detection metrics.

In this paper, we present a linear and reversible programming language with inductives types and recursion. The semantics of the languages is based on pattern-matching; we show how ensuring syntactical exhaustivity and non-overlapping of clauses is enough to ensure reversibility. The language allows to represent any Primitive Recursive Function. We then give a Curry-Howard correspondence with the logic $\mu$MALL: linear logic extended with least fixed points allowing inductive statements. The critical part of our work is to show how primitive recursion yields circular proofs that satisfy $\mu$MALL validity criterion and how the language simulates the cut-elimination procedure of $\mu$MALL.

In this paper, we present some enhanced error estimates for augmented subspace methods with the nonconforming Crouzeix-Raviart (CR) element. Before the novel estimates, we derive the explicit error estimates for the case of single eigenpair and multiple eigenpairs based on our defined spectral projection operators, respectively. Then we first strictly prove that the CR element based augmented subspace method exhibits the second-order convergence rate between the two steps of the augmented subspace iteration, which coincides with the practical experimental results. The algebraic error estimates of second order for the augmented subspace method explicitly elucidate the dependence of the convergence rate of the algebraic error on the coarse space, which provides new insights into the performance of the augmented subspace method. Numerical experiments are finally supplied to verify these new estimate results and the efficiency of our algorithms.

In the context of the Internet of Things (IoT), reliable and energy-efficient provision of IoT applications has become critical. Equipping IoT systems with tools that enable a flexible, well-performing, and automated way of monitoring and managing IoT edge devices is an essential prerequisite. In current IoT systems, low-power edge appliances have been utilized in a way that can not be controlled and re-configured in a timely manner. Hence, conducting a trade-off solution between manageability, performance and design requirements are demanded. This paper introduces a novel approach for fine-grained monitoring and managing individual micro-services within low-power edge devices, which improves system reliability and energy efficiency. The proposed method enables operational flexibility for IoT edge devices by leveraging a modularization technique. Following a review of existing solutions for remote-managed IoT services, a detailed description of the suggested approach is presented. Also, to explore the essential design principles that must be considered in this approach, the suggested architecture is elaborated in detail. Finally, the advantages of the proposed solution to deal with disruptions are demonstrated in the proof of concept-based experiments.

Aiming at expanding few-shot relations' coverage in knowledge graphs (KGs), few-shot knowledge graph completion (FKGC) has recently gained more research interests. Some existing models employ a few-shot relation's multi-hop neighbor information to enhance its semantic representation. However, noise neighbor information might be amplified when the neighborhood is excessively sparse and no neighbor is available to represent the few-shot relation. Moreover, modeling and inferring complex relations of one-to-many (1-N), many-to-one (N-1), and many-to-many (N-N) by previous knowledge graph completion approaches requires high model complexity and a large amount of training instances. Thus, inferring complex relations in the few-shot scenario is difficult for FKGC models due to limited training instances. In this paper, we propose a few-shot relational learning with global-local framework to address the above issues. At the global stage, a novel gated and attentive neighbor aggregator is built for accurately integrating the semantics of a few-shot relation's neighborhood, which helps filtering the noise neighbors even if a KG contains extremely sparse neighborhoods. For the local stage, a meta-learning based TransH (MTransH) method is designed to model complex relations and train our model in a few-shot learning fashion. Extensive experiments show that our model outperforms the state-of-the-art FKGC approaches on the frequently-used benchmark datasets NELL-One and Wiki-One. Compared with the strong baseline model MetaR, our model achieves 5-shot FKGC performance improvements of 8.0% on NELL-One and 2.8% on Wiki-One by the metric Hits@10.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

北京阿比特科技有限公司