In ObjectGoal navigation (ObjectNav), agents must locate specific objects within unseen environments, requiring effective observation, prediction, and navigation capabilities. This study found that traditional methods looking only for prediction accuracy often compromise on computational efficiency. To address this, we introduce "Skip-SCAR," a modular framework that enhances efficiency by leveraging sparsity and adaptive skips. The SparseConv-Augmented ResNet (SCAR) at the core of our approach uses sparse and dense feature processing in parallel, optimizing both the computation and memory footprint. Our adaptive skip technique further reduces computational demands by selectively bypassing unnecessary semantic segmentation steps based on environmental constancy. Tested on the HM3D ObjectNav datasets, Skip-SCAR not only minimizes resource use but also sets new performance benchmarks, demonstrating a robust method for improving efficiency and accuracy in robotic navigation tasks.
In the realm of autonomous agents, ensuring safety and reliability in complex and dynamic environments remains a paramount challenge. Safe reinforcement learning addresses these concerns by introducing safety constraints, but still faces challenges in navigating intricate environments such as complex driving situations. To overcome these challenges, we present the safe constraint reward (Safe CoR) framework, a novel method that utilizes two types of expert demonstrations$\unicode{x2013}$reward expert demonstrations focusing on performance optimization and safe expert demonstrations prioritizing safety. By exploiting a constraint reward (CoR), our framework guides the agent to balance performance goals of reward sum with safety constraints. We test the proposed framework in diverse environments, including the safety gym, metadrive, and the real$\unicode{x2013}$world Jackal platform. Our proposed framework enhances the performance of algorithms by $39\%$ and reduces constraint violations by $88\%$ on the real-world Jackal platform, demonstrating the framework's efficacy. Through this innovative approach, we expect significant advancements in real-world performance, leading to transformative effects in the realm of safe and reliable autonomous agents.
We introduce the concept of "empathic grounding" in conversational agents as an extension of Clark's conceptualization of grounding in conversation in which the grounding criterion includes listener empathy for the speaker's affective state. Empathic grounding is generally required whenever the speaker's emotions are foregrounded and can make the grounding process more efficient and reliable by communicating both propositional and affective understanding. Both speaker expressions of affect and listener empathic grounding can be multimodal, including facial expressions and other nonverbal displays. Thus, models of empathic grounding for embodied agents should be multimodal to facilitate natural and efficient communication. We describe a multimodal model that takes as input user speech and facial expression to generate multimodal grounding moves for a listening agent using a large language model. We also describe a testbed to evaluate approaches to empathic grounding, in which a humanoid robot interviews a user about a past episode of pain and then has the user rate their perception of the robot's empathy. We compare our proposed model to one that only generates non-affective grounding cues in a between-subjects experiment. Findings demonstrate that empathic grounding increases user perceptions of empathy, understanding, emotional intelligence, and trust. Our work highlights the role of emotion awareness and multimodality in generating appropriate grounding moves for conversational agents.
Tables play a crucial role in conveying information in various domains. We propose a Plan-then-Reason framework to answer different types of user queries over tables with sentence context. The framework first plans the reasoning paths over the context, then assigns each step to program-based or textual reasoning to reach the final answer. This framework enhances the table reasoning abilities for both in-context learning and fine-tuning methods. GPT-3.5-Turbo following Plan-then-Reason framework surpasses other prompting baselines without self-consistency while using less API calls and in-context demonstrations. We also construct an instruction tuning set TrixInstruct to evaluate the effectiveness of fine-tuning with this framework. We present ProTrix model family by finetuning models on TrixInstruct. Our experiments show that ProTrix family generalizes to diverse unseen tabular tasks with only 6k training instances. We further demonstrate that ProTrix can generate accurate and faithful explanations to answer complex free-form questions. Our work underscores the importance of the planning and reasoning abilities towards a model over tabular tasks with generalizability and interpretability. We open-source our dataset and models at //github.com/WilliamZR/ProTrix.
The assumption of a static environment is common in many geometric computer vision tasks like SLAM but limits their applicability in highly dynamic scenes. Since these tasks rely on identifying point correspondences between input images within the static part of the environment, we propose a graph neural network-based sparse feature matching network designed to perform robust matching under challenging conditions while excluding keypoints on moving objects. We employ a similar scheme of attentional aggregation over graph edges to enhance keypoint representations as state-of-the-art feature-matching networks but augment the graph with epipolar and temporal information and vastly reduce the number of graph edges. Furthermore, we introduce a self-supervised training scheme to extract pseudo labels for image pairs in dynamic environments from exclusively unprocessed visual-inertial data. A series of experiments show the superior performance of our network as it excludes keypoints on moving objects compared to state-of-the-art feature matching networks while still achieving similar results regarding conventional matching metrics. When integrated into a SLAM system, our network significantly improves performance, especially in highly dynamic scenes.
In causal inference, estimating heterogeneous treatment effects (HTE) is critical for identifying how different subgroups respond to interventions, with broad applications in fields such as precision medicine and personalized advertising. Although HTE estimation methods aim to improve accuracy, how to provide explicit subgroup descriptions remains unclear, hindering data interpretation and strategic intervention management. In this paper, we propose CURLS, a novel rule learning method leveraging HTE, which can effectively describe subgroups with significant treatment effects. Specifically, we frame causal rule learning as a discrete optimization problem, finely balancing treatment effect with variance and considering the rule interpretability. We design an iterative procedure based on the minorize-maximization algorithm and solve a submodular lower bound as an approximation for the original. Quantitative experiments and qualitative case studies verify that compared with state-of-the-art methods, CURLS can find subgroups where the estimated and true effects are 16.1% and 13.8% higher and the variance is 12.0% smaller, while maintaining similar or better estimation accuracy and rule interpretability. Code is available at //osf.io/zwp2k/.
UWB ranging systems have been adopted in many critical and security sensitive applications due to its precise positioning and secure ranging capabilities. We present a practical jamming attack, namely UWBAD, against commercial UWB ranging systems, which exploits the vulnerability of the adoption of the normalized cross-correlation process in UWB ranging and can selectively and quickly block ranging sessions without prior knowledge of the configurations of the victim devices, potentially leading to severe consequences such as property loss, unauthorized access, or vehicle theft. UWBAD achieves more effective and less imperceptible jamming due to: (i) it efficiently blocks every ranging session by leveraging the field-level jamming, thereby exerting a tangible impact on commercial UWB ranging systems, and (ii) the compact, reactive, and selective system design based on COTS UWB chips, making it affordable and less imperceptible. We successfully conducted real attacks against commercial UWB ranging systems from the three largest UWB chip vendors on the market, e.g., Apple, NXP, and Qorvo. We reported our findings to Apple, related Original Equipment Manufacturers (OEM), and the Automotive Security Research Group, triggering internal security incident response procedures at Volkswagen, Audi, Bosch, and NXP. As of the writing of this paper, the related OEM has acknowledged this vulnerability in their automotive systems and has offered a $5,000 reward as a bounty.
Vision-and-language navigation (VLN) stands as a key research problem of Embodied AI, aiming at enabling agents to navigate in unseen environments following linguistic instructions. In this field, generalization is a long-standing challenge, either to out-of-distribution scenes or from Sim to Real. In this paper, we propose NaVid, a video-based large vision language model (VLM), to mitigate such a generalization gap. NaVid makes the first endeavor to showcase the capability of VLMs to achieve state-of-the-art level navigation performance without any maps, odometers, or depth inputs. Following human instruction, NaVid only requires an on-the-fly video stream from a monocular RGB camera equipped on the robot to output the next-step action. Our formulation mimics how humans navigate and naturally gets rid of the problems introduced by odometer noises, and the Sim2Real gaps from map or depth inputs. Moreover, our video-based approach can effectively encode the historical observations of robots as spatio-temporal contexts for decision making and instruction following. We train NaVid with 510k navigation samples collected from continuous environments, including action-planning and instruction-reasoning samples, along with 763k large-scale web data. Extensive experiments show that NaVid achieves state-of-the-art performance in simulation environments and the real world, demonstrating superior cross-dataset and Sim2Real transfer. We thus believe our proposed VLM approach plans the next step for not only the navigation agents but also this research field.
Role-playing agents (RPA) have been a popular application area for large language models (LLMs), attracting significant interest from both industry and academia.While existing RPAs well portray the characters' knowledge and tones, they face challenges in capturing their minds, especially for small role-playing language models (RPLMs). In this paper, we propose to enhance RPLMs via personality-indicative data. Specifically, we leverage questions from psychological scales and distill advanced RPAs to generate dialogues that grasp the minds of characters. Experimental results validate that RPLMs trained with our dataset exhibit advanced role-playing capabilities for both general and personality-related evaluations. Code and data are available at \href{//github.com/alienet1109/RolePersonality}{this URL}.
Ranking risks and countermeasures is one of the foremost goals of quantitative security analysis. One of the popular frameworks, used also in industrial practice, for this task are attack-defense trees. Standard quantitative analyses available for attack-defense trees can distinguish likely from unlikely vulnerabilities. We provide a tool that allows for easy synthesis and analysis of those models, also featuring probabilities, costs and time. Furthermore, it provides a variety of interfaces to existing model checkers and analysis tools. Unfortunately, currently available tools rely on precise quantitative inputs (probabilities, timing, or costs of attacks), which are rarely available. Instead, only statistical, imprecise information is typically available, leaving us with probably approximately correct (PAC) estimates of the real quantities. As a part of our tool, we extend the standard analysis techniques so they can handle the PAC input and yield rigorous bounds on the imprecision and uncertainty of the final result of the analysis.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.