亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

While in classical cryptography, one-way functions (OWFs) are widely regarded as the "minimal assumption," the situation in quantum cryptography is less clear. Recent works have put forward two concurrent candidates for the minimal assumption in quantum cryptography: One-way state generators (OWSGs), postulating the existence of a hard search problem with an efficient verification algorithm, and EFI pairs, postulating the existence of a hard distinguishing problem. Two recent papers [Khurana and Tomer STOC'24; Batra and Jain FOCS'24] showed that OWSGs imply EFI pairs, but the reverse direction remained open. In this work, we give strong evidence that the opposite direction does not hold: We show that there is a quantum unitary oracle relative to which EFI pairs exist, but OWSGs do not. In fact, we show a slightly stronger statement that holds also for EFI pairs that output classical bits (QEFID). As a consequence, we separate, via our oracle, QEFID, and one-way puzzles from OWSGs and several other Microcrypt primitives, including efficiently verifiable one-way puzzles and unclonable state generators. In particular, this solves a problem left open in [Chung, Goldin, and Gray Crypto'24]. Using similar techniques, we also establish a fully black-box separation (which is slightly weaker than an oracle separation) between private-key quantum money schemes and QEFID pairs. One conceptual implication of our work is that the existence of an efficient verification algorithm may lead to qualitatively stronger primitives in quantum cryptography.

相關內容

Analyzing the behavior of cryptographic functions in stripped binaries is a challenging but essential task. Cryptographic algorithms exhibit greater logical complexity compared to typical code, yet their analysis is unavoidable in areas such as virus analysis and legacy code inspection. Existing methods often rely on data or structural pattern matching, leading to suboptimal generalizability and suffering from manual work. In this paper, we propose a novel framework called FoC to Figure out the Cryptographic functions in stripped binaries. In FoC, we first build a binary large language model (FoC-BinLLM) to summarize the semantics of cryptographic functions in natural language. The prediction of FoC-BinLLM is insensitive to minor changes, such as vulnerability patches. To mitigate it, we further build a binary code similarity model (FoC-Sim) upon the FoC-BinLLM to create change-sensitive representations and use it to retrieve similar implementations of unknown cryptographic functions in a database. In addition, we construct a cryptographic binary dataset for evaluation and to facilitate further research in this domain. And an automated method is devised to create semantic labels for extensive binary functions. Evaluation results demonstrate that FoC-BinLLM outperforms ChatGPT by 14.61% on the ROUGE-L score. FoC-Sim outperforms the previous best methods with a 52% higher Recall@1. Furthermore, our method also shows practical ability in virus analysis and 1-day vulnerability detection.

Modern software for propositional satisfiability problems gives a powerful automated reasoning toolkit, capable of outputting not only a satisfiable/unsatisfiable signal but also a justification of unsatisfiability in the form of resolution proof (or a more expressive proof), which is commonly used for verification purposes. Empirically, modern SAT solvers produce relatively short proofs, however, there are no inherent guarantees that these proofs cannot be significantly reduced. This paper proposes a novel branch-and-bound algorithm for finding the shortest resolution proofs; to this end, we introduce a layer list representation of proofs that groups clauses by their level of indirection. As we show, this representation breaks all permutational symmetries, thereby improving upon the state-of-the-art symmetry-breaking and informing the design of a novel workflow for proof minimization. In addition to that, we design pruning procedures that reason on proof length lower bound, clause subsumption, and dominance. Our experiments suggest that the proofs from state-of-the-art solvers could be shortened by 30-60% on the instances from SAT Competition 2002 and by 25-50% on small synthetic formulas. When treated as an algorithm for finding the shortest proof, our approach solves twice as many instances as the previous work based on SAT solving and reduces the time to optimality by orders of magnitude for the instances solved by both approaches.

The Softmax attention mechanism in Transformer models is notoriously computationally expensive, particularly due to its quadratic complexity, posing significant challenges in vision applications. In contrast, linear attention provides a far more efficient solution by reducing the complexity to linear levels. However, compared to Softmax attention, linear attention often experiences significant performance degradation. Our experiments indicate that this performance drop is due to the low-rank nature of linear attention's feature map, which hinders its ability to adequately model complex spatial information. In this paper, to break the low-rank dilemma of linear attention, we conduct rank analysis from two perspectives: the KV buffer and the output features. Consequently, we introduce Rank-Augmented Linear Attention (RALA), which rivals the performance of Softmax attention while maintaining linear complexity and high efficiency. Based on RALA, we construct the Rank-Augmented Vision Linear Transformer (RAVLT). Extensive experiments demonstrate that RAVLT achieves excellent performance across various vision tasks. Specifically, without using any additional labels, data, or supervision during training, RAVLT achieves an 84.4% Top-1 accuracy on ImageNet-1k with only 26M parameters and 4.6G FLOPs. This result significantly surpasses previous linear attention mechanisms, fully illustrating the potential of RALA. Code will be available at //github.com/qhfan/RALA.

Cardinality sketches are compact data structures for representing sets or vectors, enabling efficient approximation of their cardinality (or the number of nonzero entries). These sketches are space-efficient, typically requiring only logarithmic storage relative to input size, and support incremental updates, allowing for dynamic modifications. A critical property of many cardinality sketches is composability, meaning that the sketch of a union of sets can be computed from individual sketches. Existing designs typically provide strong statistical guarantees, accurately answering an exponential number of queries in terms of sketch size $k$. However, these guarantees degrade to quadratic in $k$ when queries are adaptive and may depend on previous responses. Prior works on statistical queries (Steinke and Ullman, 2015) and specific MinHash cardinality sketches (Ahmadian and Cohen, 2024) established that the quadratic bound on the number of adaptive queries is, in fact, unavoidable. In this work, we develop a unified framework that generalizes these results across broad classes of cardinality sketches. We show that any union-composable sketching map is vulnerable to attack with $\tilde{O}(k^4)$ queries and, if the sketching map is also monotone (as for MinHash and statistical queries), we obtain a tight bound of $\tilde{O}(k^2)$ queries. Additionally, we demonstrate that linear sketches over the reals $\mathbb{R}$ and fields $\mathbb{F}_p$ can be attacked using $\tilde{O}(k^2)$ adaptive queries, which is optimal and strengthens some of the recent results by Gribelyuk et al. (2024), which required a larger polynomial number of rounds for such matrices.

We present TelEdge, a novel method of remote haptic communication using electrical stimulation through the edges of the smartphone. The aim of this study is to explore communications that can be created by adding touch sensing and haptic feedback using the electrical edge display to conventional audio-visual functionality. We conducted monitoring observations and interviews during a video call between two people, presenting interactive haptic feedback.

By presenting curved surfaces of various curvatures including edges to the fingertip, it is possible to reproduce the haptic sensation of object shapes that cannot be reproduced by flat surfaces alone, such as spheres and rectangular objects. In this paper, we propose a method of presenting curved surfaces by controlling the inclination of a disk in contact with the finger belly with acoustic radiation pressure of ultrasound. The user only needs to mount a lightweight device on the fingertip to experience a tactile presentation with low physical burden. In the demonstration, the user can experience the sensation of stroking an edge and different curvatures of curved surfaces.

The fusion of causal models with deep learning introducing increasingly intricate data sets, such as the causal associations within images or between textual components, has surfaced as a focal research area. Nonetheless, the broadening of original causal concepts and theories to such complex, non-statistical data has been met with serious challenges. In response, our study proposes redefinitions of causal data into three distinct categories from the standpoint of causal structure and representation: definite data, semi-definite data, and indefinite data. Definite data chiefly pertains to statistical data used in conventional causal scenarios, while semi-definite data refers to a spectrum of data formats germane to deep learning, including time-series, images, text, and others. Indefinite data is an emergent research sphere inferred from the progression of data forms by us. To comprehensively present these three data paradigms, we elaborate on their formal definitions, differences manifested in datasets, resolution pathways, and development of research. We summarize key tasks and achievements pertaining to definite and semi-definite data from myriad research undertakings, present a roadmap for indefinite data, beginning with its current research conundrums. Lastly, we classify and scrutinize the key datasets presently utilized within these three paradigms.

The remarkable achievements of ChatGPT and GPT-4 have sparked a wave of interest and research in the field of large language models for Artificial General Intelligence (AGI). These models provide us with intelligent solutions that are more similar to human thinking, enabling us to use general artificial intelligence to solve problems in various applications. However, in the field of remote sensing, the scientific literature on the implementation of AGI remains relatively scant. Existing AI-related research primarily focuses on visual understanding tasks while neglecting the semantic understanding of the objects and their relationships. This is where vision-language models excel, as they enable reasoning about images and their associated textual descriptions, allowing for a deeper understanding of the underlying semantics. Vision-language models can go beyond recognizing the objects in an image and can infer the relationships between them, as well as generate natural language descriptions of the image. This makes them better suited for tasks that require both visual and textual understanding, such as image captioning, text-based image retrieval, and visual question answering. This paper provides a comprehensive review of the research on vision-language models in remote sensing, summarizing the latest progress, highlighting the current challenges, and identifying potential research opportunities. Specifically, we review the application of vision-language models in several mainstream remote sensing tasks, including image captioning, text-based image generation, text-based image retrieval, visual question answering, scene classification, semantic segmentation, and object detection. For each task, we briefly describe the task background and review some representative works. Finally, we summarize the limitations of existing work and provide some possible directions for future development.

Multimodality Representation Learning, as a technique of learning to embed information from different modalities and their correlations, has achieved remarkable success on a variety of applications, such as Visual Question Answering (VQA), Natural Language for Visual Reasoning (NLVR), and Vision Language Retrieval (VLR). Among these applications, cross-modal interaction and complementary information from different modalities are crucial for advanced models to perform any multimodal task, e.g., understand, recognize, retrieve, or generate optimally. Researchers have proposed diverse methods to address these tasks. The different variants of transformer-based architectures performed extraordinarily on multiple modalities. This survey presents the comprehensive literature on the evolution and enhancement of deep learning multimodal architectures to deal with textual, visual and audio features for diverse cross-modal and modern multimodal tasks. This study summarizes the (i) recent task-specific deep learning methodologies, (ii) the pretraining types and multimodal pretraining objectives, (iii) from state-of-the-art pretrained multimodal approaches to unifying architectures, and (iv) multimodal task categories and possible future improvements that can be devised for better multimodal learning. Moreover, we prepare a dataset section for new researchers that covers most of the benchmarks for pretraining and finetuning. Finally, major challenges, gaps, and potential research topics are explored. A constantly-updated paperlist related to our survey is maintained at //github.com/marslanm/multimodality-representation-learning.

A fundamental goal of scientific research is to learn about causal relationships. However, despite its critical role in the life and social sciences, causality has not had the same importance in Natural Language Processing (NLP), which has traditionally placed more emphasis on predictive tasks. This distinction is beginning to fade, with an emerging area of interdisciplinary research at the convergence of causal inference and language processing. Still, research on causality in NLP remains scattered across domains without unified definitions, benchmark datasets and clear articulations of the remaining challenges. In this survey, we consolidate research across academic areas and situate it in the broader NLP landscape. We introduce the statistical challenge of estimating causal effects, encompassing settings where text is used as an outcome, treatment, or as a means to address confounding. In addition, we explore potential uses of causal inference to improve the performance, robustness, fairness, and interpretability of NLP models. We thus provide a unified overview of causal inference for the computational linguistics community.

北京阿比特科技有限公司