亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study elections where voters are faced with the challenge of expressing preferences over an extreme number of issues under consideration. This is largely motivated by emerging blockchain governance systems, which include voters with different weights and a massive number of community generated proposals. In such scenarios, it is natural to expect that voters will have incomplete preferences, as they may only be able to evaluate or be confident about a very small proportion of the alternatives. As a result, the election outcome may be significantly affected, leading to suboptimal decisions. Our central inquiry revolves around whether delegation of ballots to proxies possessing greater expertise or a more comprehensive understanding of the voters' preferences can lead to outcomes with higher legitimacy and enhanced voters' satisfaction in elections where voters submit incomplete preferences. To explore its aspects, we introduce the following model: potential proxies advertise their ballots over multiple issues, and each voter either delegates to a seemingly attractive proxy or casts a ballot directly. We identify necessary and sufficient conditions that could lead to a socially better outcome by leveraging the participation of proxies. We accompany our theoretical findings with experiments on instances derived from real datasets. Overall, our results enhance the understanding of the power of delegation towards improving election outcomes.

相關內容

Large language models (LLMs) show inherent brittleness in their safety mechanisms, as evidenced by their susceptibility to jailbreaking and even non-malicious fine-tuning. This study explores this brittleness of safety alignment by leveraging pruning and low-rank modifications. We develop methods to identify critical regions that are vital for safety guardrails, and that are disentangled from utility-relevant regions at both the neuron and rank levels. Surprisingly, the isolated regions we find are sparse, comprising about $3\%$ at the parameter level and $2.5\%$ at the rank level. Removing these regions compromises safety without significantly impacting utility, corroborating the inherent brittleness of the model's safety mechanisms. Moreover, we show that LLMs remain vulnerable to low-cost fine-tuning attacks even when modifications to the safety-critical regions are restricted. These findings underscore the urgent need for more robust safety strategies in LLMs.

This paper introduces a novel approach to bolster algorithmic fairness in scenarios where sensitive information is only partially known. In particular, we propose to leverage instances with uncertain identity with regards to the sensitive attribute to train a conventional machine learning classifier. The enhanced fairness observed in the final predictions of this classifier highlights the promising potential of prioritizing ambiguity (i.e., non-normativity) as a means to improve fairness guarantees in real-world classification tasks.

Generative AI systems across modalities, ranging from text (including code), image, audio, and video, have broad social impacts, but there is no official standard for means of evaluating those impacts or for which impacts should be evaluated. In this paper, we present a guide that moves toward a standard approach in evaluating a base generative AI system for any modality in two overarching categories: what can be evaluated in a base system independent of context and what can be evaluated in a societal context. Importantly, this refers to base systems that have no predetermined application or deployment context, including a model itself, as well as system components, such as training data. Our framework for a base system defines seven categories of social impact: bias, stereotypes, and representational harms; cultural values and sensitive content; disparate performance; privacy and data protection; financial costs; environmental costs; and data and content moderation labor costs. Suggested methods for evaluation apply to listed generative modalities and analyses of the limitations of existing evaluations serve as a starting point for necessary investment in future evaluations. We offer five overarching categories for what can be evaluated in a broader societal context, each with its own subcategories: trustworthiness and autonomy; inequality, marginalization, and violence; concentration of authority; labor and creativity; and ecosystem and environment. Each subcategory includes recommendations for mitigating harm.

Fervent calls for more robust governance of the harms associated with artificial intelligence (AI) are leading to the adoption around the world of what regulatory scholars have called a management-based approach to regulation. Recent initiatives in the United States and Europe, as well as the adoption of major self-regulatory standards by the International Organization for Standardization, share in common a core management-based paradigm. These management-based initiatives seek to motivate an increase in human oversight of how AI tools are trained and developed. Refinements and systematization of human-guided training techniques will thus be needed to fit within this emerging era of management-based regulatory paradigm. If taken seriously, human-guided training can alleviate some of the technical and ethical pressures on AI, boosting AI performance with human intuition as well as better addressing the needs for fairness and effective explainability. In this paper, we discuss the connection between the emerging management-based regulatory frameworks governing AI and the need for human oversight during training. We broadly cover some of the technical components involved in human-guided training and then argue that the kinds of high-stakes use cases for AI that appear of most concern to regulators should lean more on human-guided training than on data-only training. We hope to foster a discussion between legal scholars and computer scientists involving how to govern a domain of technology that is vast, heterogenous, and dynamic in its applications and risks.

This article focuses on drawing computationally-efficient predictive inference from Gaussian process (GP) regressions with a large number of features when the response is conditionally independent of the features given the projection to a noisy low dimensional manifold. Bayesian estimation of the regression relationship using Markov Chain Monte Carlo and subsequent predictive inference is computationally prohibitive and may lead to inferential inaccuracies since accurate variable selection is essentially impossible in such high-dimensional GP regressions. As an alternative, this article proposes a strategy to sketch the high-dimensional feature vector with a carefully constructed sketching matrix, before fitting a GP with the scalar outcome and the sketched feature vector to draw predictive inference. The analysis is performed in parallel with many different sketching matrices and smoothing parameters in different processors, and the predictive inferences are combined using Bayesian predictive stacking. Since posterior predictive distribution in each processor is analytically tractable, the algorithm allows bypassing the robustness issues due to convergence and mixing of MCMC chains, leading to fast implementation with very large number of features. Simulation studies show superior performance of the proposed approach with a wide variety of competitors. The approach outperforms competitors in drawing point prediction with predictive uncertainties of outdoor air pollution from satellite images.

The integration of experiment technologies with large language models (LLMs) is transforming scientific research, offering AI capabilities beyond specialized problem-solving to becoming research assistants for human scientists. In power systems, simulations are essential for research. However, LLMs face significant challenges in power system simulations due to limited pre-existing knowledge and the complexity of power grids. To address this issue, this work proposes a modular framework that integrates expertise from both the power system and LLM domains. This framework enhances LLMs' ability to perform power system simulations on previously unseen tools. Validated using 34 simulation tasks in Daline, a (optimal) power flow simulation and linearization toolbox not yet exposed to LLMs, the proposed framework improved GPT-4o's simulation coding accuracy from 0% to 96.07%, also outperforming the ChatGPT-4o web interface's 33.8% accuracy (with the entire knowledge base uploaded). These results highlight the potential of LLMs as research assistants in power systems.

Training neural networks with high certified accuracy against adversarial examples remains an open problem despite significant efforts. While certification methods can effectively leverage tight convex relaxations for bound computation, in training, these methods perform worse than looser relaxations. Prior work hypothesized that this is caused by the discontinuity and perturbation sensitivity of the loss surface induced by these tighter relaxations. In this work, we show theoretically that Gaussian Loss Smoothing can alleviate both issues. We confirm this empirically by proposing a certified training method combining PGPE, an algorithm computing gradients of a smoothed loss, with different convex relaxations. When using this training method, we observe that tighter bounds indeed lead to strictly better networks. While scaling PGPE training remains challenging due to high computational cost, we show that by using a not theoretically sound, yet much cheaper smoothing approximation, we obtain better certified accuracies than state-of-the-art methods when training on the same network architecture. Our results clearly demonstrate the promise of Gaussian Loss Smoothing for training certifiably robust neural networks.

The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

In order to answer natural language questions over knowledge graphs, most processing pipelines involve entity and relation linking. Traditionally, entity linking and relation linking has been performed either as dependent sequential tasks or independent parallel tasks. In this paper, we propose a framework called "EARL", which performs entity linking and relation linking as a joint single task. EARL uses a graph connection based solution to the problem. We model the linking task as an instance of the Generalised Travelling Salesman Problem (GTSP) and use GTSP approximate algorithm solutions. We later develop EARL which uses a pair-wise graph-distance based solution to the problem.The system determines the best semantic connection between all keywords of the question by referring to a knowledge graph. This is achieved by exploiting the "connection density" between entity candidates and relation candidates. The "connection density" based solution performs at par with the approximate GTSP solution.We have empirically evaluated the framework on a dataset with 5000 questions. Our system surpasses state-of-the-art scores for entity linking task by reporting an accuracy of 0.65 to 0.40 from the next best entity linker.

北京阿比特科技有限公司