亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Existing research primarily focuses on backdoor attacks and defenses within the generic federated learning scenario, where all clients collaborate to train a single global model. A recent study conducted by Qin et al. (2023) marks the initial exploration of backdoor attacks within the personalized federated learning (pFL) scenario, where each client constructs a personalized model based on its local data. Notably, the study demonstrates that pFL methods with \textit{parameter decoupling} can significantly enhance robustness against backdoor attacks. However, in this paper, we whistleblow that pFL methods with parameter decoupling are still vulnerable to backdoor attacks. The resistance of pFL methods with parameter decoupling is attributed to the heterogeneous classifiers between malicious clients and benign counterparts. We analyze two direct causes of the heterogeneous classifiers: (1) data heterogeneity inherently exists among clients and (2) poisoning by malicious clients further exacerbates the data heterogeneity. To address these issues, we propose a two-pronged attack method, BapFL, which comprises two simple yet effective strategies: (1) poisoning only the feature encoder while keeping the classifier fixed and (2) diversifying the classifier through noise introduction to simulate that of the benign clients. Extensive experiments on three benchmark datasets under varying conditions demonstrate the effectiveness of our proposed attack. Additionally, we evaluate the effectiveness of six widely used defense methods and find that BapFL still poses a significant threat even in the presence of the best defense, Multi-Krum. We hope to inspire further research on attack and defense strategies in pFL scenarios. The code is available at: //github.com/BapFL/code.

相關內容

Systems of interacting objects often evolve under the influence of field effects that govern their dynamics, yet previous works have abstracted away from such effects, and assume that systems evolve in a vacuum. In this work, we focus on discovering these fields, and infer them from the observed dynamics alone, without directly observing them. We theorize the presence of latent force fields, and propose neural fields to learn them. Since the observed dynamics constitute the net effect of local object interactions and global field effects, recently popularized equivariant networks are inapplicable, as they fail to capture global information. To address this, we propose to disentangle local object interactions -- which are $\mathrm{SE}(n)$ equivariant and depend on relative states -- from external global field effects -- which depend on absolute states. We model interactions with equivariant graph networks, and combine them with neural fields in a novel graph network that integrates field forces. Our experiments show that we can accurately discover the underlying fields in charged particles settings, traffic scenes, and gravitational n-body problems, and effectively use them to learn the system and forecast future trajectories.

Adversarial robustness research primarily focuses on L_p perturbations, and most defenses are developed with identical training-time and test-time adversaries. However, in real-world applications developers are unlikely to have access to the full range of attacks or corruptions their system will face. Furthermore, worst-case inputs are likely to be diverse and need not be constrained to the L_p ball. To narrow in on this discrepancy between research and reality we introduce ImageNet-UA, a framework for evaluating model robustness against a range of unforeseen adversaries, including eighteen new non-L_p attacks. To perform well on ImageNet-UA, defenses must overcome a generalization gap and be robust to a diverse attacks not encountered during training. In extensive experiments, we find that existing robustness measures do not capture unforeseen robustness, that standard robustness techniques are beat by alternative training strategies, and that novel methods can improve unforeseen robustness. We present ImageNet-UA as a useful tool for the community for improving the worst-case behavior of machine learning systems.

Motion planning is still an open problem for many disciplines, e.g., robotics, autonomous driving, due to their need for high computational resources that hinder real-time, efficient decision-making. A class of methods striving to provide smooth solutions is gradient-based trajectory optimization. However, those methods usually suffer from bad local minima, while for many settings, they may be inapplicable due to the absence of easy-to-access gradients of the optimization objectives. In response to these issues, we introduce Motion Planning via Optimal Transport (MPOT) -- a \textit{gradient-free} method that optimizes a batch of smooth trajectories over highly nonlinear costs, even for high-dimensional tasks, while imposing smoothness through a Gaussian Process dynamics prior via the planning-as-inference perspective. To facilitate batch trajectory optimization, we introduce an original zero-order and highly-parallelizable update rule -- -the Sinkhorn Step, which uses the regular polytope family for its search directions. Each regular polytope, centered on trajectory waypoints, serves as a local cost-probing neighborhood, acting as a \textit{trust region} where the Sinkhorn Step ``transports'' local waypoints toward low-cost regions. We theoretically show that Sinkhorn Step guides the optimizing parameters toward local minima regions of non-convex objective functions. We then show the efficiency of MPOT in a range of problems from low-dimensional point-mass navigation to high-dimensional whole-body robot motion planning, evincing its superiority compared to popular motion planners, paving the way for new applications of optimal transport in motion planning.

We study the problem of generating arbitrarily large environments to improve the throughput of multi-robot systems. Prior work proposes Quality Diversity (QD) algorithms as an effective method for optimizing the environments of automated warehouses. However, these approaches optimize only relatively small environments, falling short when it comes to replicating real-world warehouse sizes. The challenge arises from the exponential increase in the search space as the environment size increases. Additionally, the previous methods have only been tested with up to 350 robots in simulations, while practical warehouses could host thousands of robots. In this paper, instead of optimizing environments, we propose to optimize Neural Cellular Automata (NCA) environment generators via QD algorithms. We train a collection of NCA generators with QD algorithms in small environments and then generate arbitrarily large environments from the generators at test time. We show that NCA environment generators maintain consistent, regularized patterns regardless of environment size, significantly enhancing the scalability of multi-robot systems in two different domains with up to 2,350 robots. Additionally, we demonstrate that our method scales a single-agent reinforcement learning policy to arbitrarily large environments with similar patterns. We include the source code at \url{//github.com/lunjohnzhang/warehouse_env_gen_nca_public}.

This paper focuses on addressing the practical yet challenging problem of model heterogeneity in federated learning, where clients possess models with different network structures. To track this problem, we propose a novel framework called pFedHR, which leverages heterogeneous model reassembly to achieve personalized federated learning. In particular, we approach the problem of heterogeneous model personalization as a model-matching optimization task on the server side. Moreover, pFedHR automatically and dynamically generates informative and diverse personalized candidates with minimal human intervention. Furthermore, our proposed heterogeneous model reassembly technique mitigates the adverse impact introduced by using public data with different distributions from the client data to a certain extent. Experimental results demonstrate that pFedHR outperforms baselines on three datasets under both IID and Non-IID settings. Additionally, pFedHR effectively reduces the adverse impact of using different public data and dynamically generates diverse personalized models in an automated manner.

Multivariate Item Response Theory (MIRT) is sought-after widely by applied researchers looking for interpretable (sparse) explanations underlying response patterns in questionnaire data. There is, however, an unmet demand for such sparsity discovery tools in practice. Our paper develops a Bayesian platform for binary and ordinal item MIRT which requires minimal tuning and scales well on relatively large datasets due to its parallelizable features. Bayesian methodology for MIRT models has traditionally relied on MCMC simulation, which cannot only be slow in practice, but also often renders exact sparsity recovery impossible without additional thresholding. In this work, we develop a scalable Bayesian EM algorithm to estimate sparse factor loadings from binary and ordinal item responses. We address the seemingly insurmountable problem of unknown latent factor dimensionality with tools from Bayesian nonparametrics which enable estimating the number of factors. Rotations to sparsity through parameter expansion further enhance convergence and interpretability without identifiability constraints. In our simulation study, we show that our method reliably recovers both the factor dimensionality as well as the latent structure on high-dimensional synthetic data even for small samples. We demonstrate the practical usefulness of our approach on two datasets: an educational item response dataset and a quality-of-life measurement dataset. Both demonstrations show that our tool yields interpretable estimates, facilitating interesting discoveries that might otherwise go unnoticed under a pure confirmatory factor analysis setting. We provide an easy-to-use software which is a useful new addition to the MIRT toolkit and which will hopefully serve as the go-to method for practitioners.

Breakthroughs in machine learning in the last decade have led to `digital intelligence', i.e. machine learning models capable of learning from vast amounts of labeled data to perform several digital tasks such as speech recognition, face recognition, machine translation and so on. The goal of this thesis is to make progress towards designing algorithms capable of `physical intelligence', i.e. building intelligent autonomous navigation agents capable of learning to perform complex navigation tasks in the physical world involving visual perception, natural language understanding, reasoning, planning, and sequential decision making. Despite several advances in classical navigation methods in the last few decades, current navigation agents struggle at long-term semantic navigation tasks. In the first part of the thesis, we discuss our work on short-term navigation using end-to-end reinforcement learning to tackle challenges such as obstacle avoidance, semantic perception, language grounding, and reasoning. In the second part, we present a new class of navigation methods based on modular learning and structured explicit map representations, which leverage the strengths of both classical and end-to-end learning methods, to tackle long-term navigation tasks. We show that these methods are able to effectively tackle challenges such as localization, mapping, long-term planning, exploration and learning semantic priors. These modular learning methods are capable of long-term spatial and semantic understanding and achieve state-of-the-art results on various navigation tasks.

Self-supervised learning has been widely used to obtain transferrable representations from unlabeled images. Especially, recent contrastive learning methods have shown impressive performances on downstream image classification tasks. While these contrastive methods mainly focus on generating invariant global representations at the image-level under semantic-preserving transformations, they are prone to overlook spatial consistency of local representations and therefore have a limitation in pretraining for localization tasks such as object detection and instance segmentation. Moreover, aggressively cropped views used in existing contrastive methods can minimize representation distances between the semantically different regions of a single image. In this paper, we propose a spatially consistent representation learning algorithm (SCRL) for multi-object and location-specific tasks. In particular, we devise a novel self-supervised objective that tries to produce coherent spatial representations of a randomly cropped local region according to geometric translations and zooming operations. On various downstream localization tasks with benchmark datasets, the proposed SCRL shows significant performance improvements over the image-level supervised pretraining as well as the state-of-the-art self-supervised learning methods.

Attention networks in multimodal learning provide an efficient way to utilize given visual information selectively. However, the computational cost to learn attention distributions for every pair of multimodal input channels is prohibitively expensive. To solve this problem, co-attention builds two separate attention distributions for each modality neglecting the interaction between multimodal inputs. In this paper, we propose bilinear attention networks (BAN) that find bilinear attention distributions to utilize given vision-language information seamlessly. BAN considers bilinear interactions among two groups of input channels, while low-rank bilinear pooling extracts the joint representations for each pair of channels. Furthermore, we propose a variant of multimodal residual networks to exploit eight-attention maps of the BAN efficiently. We quantitatively and qualitatively evaluate our model on visual question answering (VQA 2.0) and Flickr30k Entities datasets, showing that BAN significantly outperforms previous methods and achieves new state-of-the-arts on both datasets.

This paper proposes a method to modify traditional convolutional neural networks (CNNs) into interpretable CNNs, in order to clarify knowledge representations in high conv-layers of CNNs. In an interpretable CNN, each filter in a high conv-layer represents a certain object part. We do not need any annotations of object parts or textures to supervise the learning process. Instead, the interpretable CNN automatically assigns each filter in a high conv-layer with an object part during the learning process. Our method can be applied to different types of CNNs with different structures. The clear knowledge representation in an interpretable CNN can help people understand the logics inside a CNN, i.e., based on which patterns the CNN makes the decision. Experiments showed that filters in an interpretable CNN were more semantically meaningful than those in traditional CNNs.

北京阿比特科技有限公司