Visual Analytics (VA) tools and techniques have been instrumental in supporting users to build better classification models, interpret models' overall logic, and audit results. In a different direction, VA has recently been applied to transform classification models into descriptive mechanisms instead of predictive. The idea is to use such models as surrogates for data patterns, visualizing the model to understand the phenomenon represented by the data. Although very useful and inspiring, the few proposed approaches have opted to use low complex classification models to promote straightforward interpretation, presenting limitations to capture intricate data patterns. In this paper, we present VAX (multiVariate dAta eXplanation), a new VA method to support the identification and visual interpretation of patterns in multivariate datasets. Unlike the existing similar approaches, VAX uses the concept of Jumping Emerging Patterns to identify and aggregate several diversified patterns, producing explanations through logic combinations of data variables. The potential of VAX to interpret complex multivariate datasets is demonstrated through use-cases employing two real-world datasets covering different scenarios.
Not only automation of manufacturing processes but also automation of automation procedures itself become increasingly relevant to automation research. In this context, automated capability assessment, mainly leveraged by deep learning systems driven from 3D CAD data, have been presented. Current assessment systems may be able to assess CAD data with regards to abstract features, e.g. the ability to automatically separate components from bulk goods, or the presence of gripping surfaces. Nevertheless, they suffer from the factor of black box systems, where an assessment can be learned and generated easily, but without any geometrical indicator about the reasons of the system's decision. By utilizing explainable AI (xAI) methods, we attempt to open up the black box. Explainable AI methods have been used in order to assess whether a neural network has successfully learned a given task or to analyze which features of an input might lead to an adversarial attack. These methods aim to derive additional insights into a neural network, by analyzing patterns from a given input and its impact to the network output. Within the NeuroCAD Project, xAI methods are used to identify geometrical features which are associated with a certain abstract feature. Within this work, a sensitivity analysis (SA), the layer-wise relevance propagation (LRP), the Gradient-weighted Class Activation Mapping (Grad-CAM) method as well as the Local Interpretable Model-Agnostic Explanations (LIME) have been implemented in the NeuroCAD environment, allowing not only to assess CAD models but also to identify features which have been relevant for the network decision. In the medium run, this might enable to identify regions of interest supporting product designers to optimize their models with regards to assembly processes.
Neural networks are capable of learning powerful representations of data, but they are susceptible to overfitting due to the number of parameters. This is particularly challenging in the domain of time series classification, where datasets may contain fewer than 100 training examples. In this paper, we show that the simple methods of cutout, cutmix, mixup, and window warp improve the robustness and overall performance in a statistically significant way for convolutional, recurrent, and self-attention based architectures for time series classification. We evaluate these methods on 26 datasets from the University of East Anglia Multivariate Time Series Classification (UEA MTSC) archive and analyze how these methods perform on different types of time series data.. We show that the InceptionTime network with augmentation improves accuracy by 1% to 45% in 18 different datasets compared to without augmentation. We also show that augmentation improves accuracy for recurrent and self attention based architectures.
Cluster analysis aims at partitioning data into groups or clusters. In applications, it is common to deal with problems where the number of clusters is unknown. Bayesian mixture models employed in such applications usually specify a flexible prior that takes into account the uncertainty with respect to the number of clusters. However, a major empirical challenge involving the use of these models is in the characterisation of the induced prior on the partitions. This work introduces an approach to compute descriptive statistics of the prior on the partitions for three selected Bayesian mixture models developed in the areas of Bayesian finite mixtures and Bayesian nonparametrics. The proposed methodology involves computationally efficient enumeration of the prior on the number of clusters in-sample (termed as ``data clusters'') and determining the first two prior moments of symmetric additive statistics characterising the partitions. The accompanying reference implementation is made available in the R package 'fipp'. Finally, we illustrate the proposed methodology through comparisons and also discuss the implications for prior elicitation in applications.
The field of Text-to-Speech has experienced huge improvements last years benefiting from deep learning techniques. Producing realistic speech becomes possible now. As a consequence, the research on the control of the expressiveness, allowing to generate speech in different styles or manners, has attracted increasing attention lately. Systems able to control style have been developed and show impressive results. However the control parameters often consist of latent variables and remain complex to interpret. In this paper, we analyze and compare different latent spaces and obtain an interpretation of their influence on expressive speech. This will enable the possibility to build controllable speech synthesis systems with an understandable behaviour.
Small data challenges have emerged in many learning problems, since the success of deep neural networks often relies on the availability of a huge amount of labeled data that is expensive to collect. To address it, many efforts have been made on training complex models with small data in an unsupervised and semi-supervised fashion. In this paper, we will review the recent progresses on these two major categories of methods. A wide spectrum of small data models will be categorized in a big picture, where we will show how they interplay with each other to motivate explorations of new ideas. We will review the criteria of learning the transformation equivariant, disentangled, self-supervised and semi-supervised representations, which underpin the foundations of recent developments. Many instantiations of unsupervised and semi-supervised generative models have been developed on the basis of these criteria, greatly expanding the territory of existing autoencoders, generative adversarial nets (GANs) and other deep networks by exploring the distribution of unlabeled data for more powerful representations. While we focus on the unsupervised and semi-supervised methods, we will also provide a broader review of other emerging topics, from unsupervised and semi-supervised domain adaptation to the fundamental roles of transformation equivariance and invariance in training a wide spectrum of deep networks. It is impossible for us to write an exclusive encyclopedia to include all related works. Instead, we aim at exploring the main ideas, principles and methods in this area to reveal where we are heading on the journey towards addressing the small data challenges in this big data era.
Machine-learning models have demonstrated great success in learning complex patterns that enable them to make predictions about unobserved data. In addition to using models for prediction, the ability to interpret what a model has learned is receiving an increasing amount of attention. However, this increased focus has led to considerable confusion about the notion of interpretability. In particular, it is unclear how the wide array of proposed interpretation methods are related, and what common concepts can be used to evaluate them. We aim to address these concerns by defining interpretability in the context of machine learning and introducing the Predictive, Descriptive, Relevant (PDR) framework for discussing interpretations. The PDR framework provides three overarching desiderata for evaluation: predictive accuracy, descriptive accuracy and relevancy, with relevancy judged relative to a human audience. Moreover, to help manage the deluge of interpretation methods, we introduce a categorization of existing techniques into model-based and post-hoc categories, with sub-groups including sparsity, modularity and simulatability. To demonstrate how practitioners can use the PDR framework to evaluate and understand interpretations, we provide numerous real-world examples. These examples highlight the often under-appreciated role played by human audiences in discussions of interpretability. Finally, based on our framework, we discuss limitations of existing methods and directions for future work. We hope that this work will provide a common vocabulary that will make it easier for both practitioners and researchers to discuss and choose from the full range of interpretation methods.
Generative Adversarial Networks (GANs) have recently achieved impressive results for many real-world applications, and many GAN variants have emerged with improvements in sample quality and training stability. However, they have not been well visualized or understood. How does a GAN represent our visual world internally? What causes the artifacts in GAN results? How do architectural choices affect GAN learning? Answering such questions could enable us to develop new insights and better models. In this work, we present an analytic framework to visualize and understand GANs at the unit-, object-, and scene-level. We first identify a group of interpretable units that are closely related to object concepts using a segmentation-based network dissection method. Then, we quantify the causal effect of interpretable units by measuring the ability of interventions to control objects in the output. We examine the contextual relationship between these units and their surroundings by inserting the discovered object concepts into new images. We show several practical applications enabled by our framework, from comparing internal representations across different layers, models, and datasets, to improving GANs by locating and removing artifact-causing units, to interactively manipulating objects in a scene. We provide open source interpretation tools to help researchers and practitioners better understand their GAN models.
In recent years with the rise of Cloud Computing (CC), many companies providing services in the cloud, are empowered a new series of services to their catalog, such as data mining (DM) and data processing, taking advantage of the vast computing resources available to them. Different service definition proposals have been proposed to address the problem of describing services in CC in a comprehensive way. Bearing in mind that each provider has its own definition of the logic of its services, and specifically of DM services, it should be pointed out that the possibility of describing services in a flexible way between providers is fundamental in order to maintain the usability and portability of this type of CC services. The use of semantic technologies based on the proposal offered by Linked Data (LD) for the definition of services, allows the design and modelling of DM services, achieving a high degree of interoperability. In this article a schema for the definition of DM services on CC is presented, in addition are considered all key aspects of service in CC, such as prices, interfaces, Software Level Agreement, instances or workflow of experimentation, among others. The proposal presented is based on LD, so that it reuses other schemata obtaining a best definition of the service. For the validation of the schema, a series of DM services have been created where some of the best known algorithms such as \textit{Random Forest} or \textit{KMeans} are modeled as services.
Multivariate time series forecasting is extensively studied throughout the years with ubiquitous applications in areas such as finance, traffic, environment, etc. Still, concerns have been raised on traditional methods for incapable of modeling complex patterns or dependencies lying in real word data. To address such concerns, various deep learning models, mainly Recurrent Neural Network (RNN) based methods, are proposed. Nevertheless, capturing extremely long-term patterns while effectively incorporating information from other variables remains a challenge for time-series forecasting. Furthermore, lack-of-explainability remains one serious drawback for deep neural network models. Inspired by Memory Network proposed for solving the question-answering task, we propose a deep learning based model named Memory Time-series network (MTNet) for time series forecasting. MTNet consists of a large memory component, three separate encoders, and an autoregressive component to train jointly. Additionally, the attention mechanism designed enable MTNet to be highly interpretable. We can easily tell which part of the historic data is referenced the most.
Steve Jobs, one of the greatest visionaries of our time was quoted in 1996 saying "a lot of times, people do not know what they want until you show it to them" [38] indicating he advocated products to be developed based on human intuition rather than research. With the advancements of mobile devices, social networks and the Internet of Things, enormous amounts of complex data, both structured and unstructured are being captured in hope to allow organizations to make better business decisions as data is now vital for an organizations success. These enormous amounts of data are referred to as Big Data, which enables a competitive advantage over rivals when processed and analyzed appropriately. However Big Data Analytics has a few concerns including Management of Data-lifecycle, Privacy & Security, and Data Representation. This paper reviews the fundamental concept of Big Data, the Data Storage domain, the MapReduce programming paradigm used in processing these large datasets, and focuses on two case studies showing the effectiveness of Big Data Analytics and presents how it could be of greater good in the future if handled appropriately.