亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the stochastic multi-player multi-armed bandit problem. In this problem, $m$ players cooperate to maximize their total reward from $K > m$ arms. However the players cannot communicate and are penalized (e.g. receive no reward) if they pull the same arm at the same time. We ask whether it is possible to obtain optimal instance-dependent regret $\tilde{O}(1/\Delta)$ where $\Delta$ is the gap between the $m$-th and $m+1$-st best arms. Such guarantees were recently achieved in a model allowing the players to implicitly communicate through intentional collisions. Surprisingly, we show that with no communication at all, such guarantees are not achievable. In fact, obtaining the optimal $\tilde{O}(1/\Delta)$ regret for some values of $\Delta$ necessarily implies strictly sub-optimal regret in other regimes. Our main result is a complete characterization of the Pareto optimal instance-dependent trade-offs that are possible with no communication. Our algorithm generalizes that of Bubeck, Budzinski, and the second author. As there, our algorithm succeeds even when feedback upon collision can be corrupted by an adaptive adversary, thanks to a strong no-collision property. Our lower bound is based on topological obstructions at multiple scales and is completely new.

相關內容

Boolean Matrix Factorization (BMF) aims to find an approximation of a given binary matrix as the Boolean product of two low-rank binary matrices. Binary data is ubiquitous in many fields, and representing data by binary matrices is common in medicine, natural language processing, bioinformatics, computer graphics, among many others. Unfortunately, BMF is computationally hard and heuristic algorithms are used to compute Boolean factorizations. Very recently, the theoretical breakthrough was obtained independently by two research groups. Ban et al. (SODA 2019) and Fomin et al. (Trans. Algorithms 2020) show that BMF admits an efficient polynomial-time approximation scheme (EPTAS). However, despite the theoretical importance, the high double-exponential dependence of the running times from the rank makes these algorithms unimplementable in practice. The primary research question motivating our work is whether the theoretical advances on BMF could lead to practical algorithms. The main conceptional contribution of our work is the following. While EPTAS for BMF is a purely theoretical advance, the general approach behind these algorithms could serve as the basis in designing better heuristics. We also use this strategy to develop new algorithms for related $\mathbb{F}_p$-Matrix Factorization. Here, given a matrix $A$ over a finite field GF($p$) where $p$ is a prime, and an integer $r$, our objective is to find a matrix $B$ over the same field with GF($p$)-rank at most $r$ minimizing some norm of $A-B$. Our empirical research on synthetic and real-world data demonstrates the advantage of the new algorithms over previous works on BMF and $\mathbb{F}_p$-Matrix Factorization.

We present a non-asymptotic lower bound on the eigenspectrum of the design matrix generated by any linear bandit algorithm with sub-linear regret when the action set has well-behaved curvature. Specifically, we show that the minimum eigenvalue of the expected design matrix grows as $\Omega(\sqrt{n})$ whenever the expected cumulative regret of the algorithm is $O(\sqrt{n})$, where $n$ is the learning horizon, and the action-space has a constant Hessian around the optimal arm. This shows that such action-spaces force a polynomial lower bound rather than a logarithmic lower bound, as shown by \cite{lattimore2017end}, in discrete (i.e., well-separated) action spaces. Furthermore, while the previous result is shown to hold only in the asymptotic regime (as $n \to \infty$), our result for these ``locally rich" action spaces is any-time. Additionally, under a mild technical assumption, we obtain a similar lower bound on the minimum eigen value holding with high probability. We apply our result to two practical scenarios -- \emph{model selection} and \emph{clustering} in linear bandits. For model selection, we show that an epoch-based linear bandit algorithm adapts to the true model complexity at a rate exponential in the number of epochs, by virtue of our novel spectral bound. For clustering, we consider a multi agent framework where we show, by leveraging the spectral result, that no forced exploration is necessary -- the agents can run a linear bandit algorithm and estimate their underlying parameters at once, and hence incur a low regret.

Harnessing parity-time (PT) symmetry with balanced gain and loss profiles has created a variety of opportunities in electronics from wireless energy transfer to telemetry sensing and topological defect engineering. However, existing implementations often employ ad-hoc approaches at low operating frequencies and are unable to accommodate large-scale integration. Here, we report a fully integrated realization of PT-symmetry in a standard complementary metal-oxide-semiconductor technology. Our work demonstrates salient PT-symmetry features such as phase transition as well as the ability to manipulate broadband microwave generation and propagation beyond the limitations encountered by exiting schemes. The system shows 2.1 times bandwidth and 30 percentage noise reduction compared to conventional microwave generation in oscillatory mode and displays large non-reciprocal microwave transport from 2.75 to 3.10 gigahertz in non-oscillatory mode due to enhanced nonlinearities. This approach could enrich integrated circuit (IC) design methodology beyond well-established performance limits and enable the use of scalable IC technology to study topological effects in high-dimensional non-Hermitian systems.

We consider the NP-hard problem of approximating a tensor with binary entries by a rank-one tensor, referred to as rank-one Boolean tensor factorization problem. We formulate this problem, in an extended space of variables, as the problem of minimizing a linear function over a highly structured multilinear set. Leveraging on our prior results regarding the facial structure of multilinear polytopes, we propose novel linear programming relaxations for rank-one Boolean tensor factorization. To analyze the performance of the proposed linear programs, we consider a semi-random corruption model for the input tensor. We first consider the original NP-hard problem and establish necessary and sufficient conditions for the recovery of the ground truth with high probability. Next, we obtain sufficient conditions under which the proposed linear programming relaxations recover the ground truth with high probability. Our theoretical results as well as numerical simulations indicate that certain facets of the multilinear polytope significantly improve the recovery properties of linear programming relaxations for rank-one Boolean tensor factorization.

Shape-constrained density estimation is an important topic in mathematical statistics. We focus on densities on $\mathbb{R}^d$ that are log-concave, and we study geometric properties of the maximum likelihood estimator (MLE) for weighted samples. Cule, Samworth, and Stewart showed that the logarithm of the optimal log-concave density is piecewise linear and supported on a regular subdivision of the samples. This defines a map from the space of weights to the set of regular subdivisions of the samples, i.e. the face poset of their secondary polytope. We prove that this map is surjective. In fact, every regular subdivision arises in the MLE for some set of weights with positive probability, but coarser subdivisions appear to be more likely to arise than finer ones. To quantify these results, we introduce a continuous version of the secondary polytope, whose dual we name the Samworth body. This article establishes a new link between geometric combinatorics and nonparametric statistics, and it suggests numerous open problems.

We study the problem of learning nonparametric distributions in a finite mixture, and establish tight bounds on the sample complexity for learning the component distributions in such models. Namely, we are given i.i.d. samples from a pdf $f$ where $$ f=\sum_{i=1}^k w_i f_i, \quad\sum_{i=1}^k w_i=1, \quad w_i>0 $$ and we are interested in learning each component $f_i$. Without any assumptions on $f_i$, this problem is ill-posed. In order to identify the components $f_i$, we assume that each $f_i$ can be written as a convolution of a Gaussian and a compactly supported density $\nu_i$ with $\text{supp}(\nu_i)\cap \text{supp}(\nu_j)=\emptyset$. Our main result shows that $(\frac{1}{\varepsilon})^{\Omega(\log\log \frac{1}{\varepsilon})}$ samples are required for estimating each $f_i$. Unlike parametric mixtures, the difficulty does not arise from the order $k$ or small weights $w_i$, and unlike nonparametric density estimation it does not arise from the curse of dimensionality, irregularity, or inhomogeneity. The proof relies on a fast rate for approximation with Gaussians, which may be of independent interest. To show this is tight, we also propose an algorithm that uses $(\frac{1}{\varepsilon})^{O(\log\log \frac{1}{\varepsilon})}$ samples to estimate each $f_i$. Unlike existing approaches to learning latent variable models based on moment-matching and tensor methods, our proof instead involves a delicate analysis of an ill-conditioned linear system via orthogonal functions. Combining these bounds, we conclude that the optimal sample complexity of this problem properly lies in between polynomial and exponential, which is not common in learning theory.

This paper studies \emph{linear} and \emph{affine} error-correcting codes for correcting synchronization errors such as insertions and deletions. We call such codes linear/affine insdel codes. Linear codes that can correct even a single deletion are limited to have information rate at most $1/2$ (achieved by the trivial 2-fold repetition code). Previously, it was (erroneously) reported that more generally no non-trivial linear codes correcting $k$ deletions exist, i.e., that the $(k+1)$-fold repetition codes and its rate of $1/(k+1)$ are basically optimal for any $k$. We disprove this and show the existence of binary linear codes of length $n$ and rate just below $1/2$ capable of correcting $\Omega(n)$ insertions and deletions. This identifies rate $1/2$ as a sharp threshold for recovery from deletions for linear codes, and reopens the quest for a better understanding of the capabilities of linear codes for correcting insertions/deletions. We prove novel outer bounds and existential inner bounds for the rate vs. (edit) distance trade-off of linear insdel codes. We complement our existential results with an efficient synchronization-string-based transformation that converts any asymptotically-good linear code for Hamming errors into an asymptotically-good linear code for insdel errors. Lastly, we show that the $\frac{1}{2}$-rate limitation does not hold for affine codes by giving an explicit affine code of rate $1-\epsilon$ which can efficiently correct a constant fraction of insdel errors.

Generative Adversarial Networks (GANs) have achieved a great success in unsupervised learning. Despite its remarkable empirical performance, there are limited theoretical studies on the statistical properties of GANs. This paper provides approximation and statistical guarantees of GANs for the estimation of data distributions that have densities in a H\"{o}lder space. Our main result shows that, if the generator and discriminator network architectures are properly chosen, GANs are consistent estimators of data distributions under strong discrepancy metrics, such as the Wasserstein-1 distance. Furthermore, when the data distribution exhibits low-dimensional structures, we show that GANs are capable of capturing the unknown low-dimensional structures in data and enjoy a fast statistical convergence, which is free of curse of the ambient dimensionality. Our analysis for low-dimensional data builds upon a universal approximation theory of neural networks with Lipschitz continuity guarantees, which may be of independent interest.

Policy learning in multi-agent reinforcement learning (MARL) is challenging due to the exponential growth of joint state-action space with respect to the number of agents. To achieve higher scalability, the paradigm of centralized training with decentralized execution (CTDE) is broadly adopted with factorized structure in MARL. However, we observe that existing CTDE algorithms in cooperative MARL cannot achieve optimality even in simple matrix games. To understand this phenomenon, we introduce a framework of Generalized Multi-Agent Actor-Critic with Policy Factorization (GPF-MAC), which characterizes the learning of factorized joint policies, i.e., each agent's policy only depends on its own observation-action history. We show that most popular CTDE MARL algorithms are special instances of GPF-MAC and may be stuck in a suboptimal joint policy. To address this issue, we present a novel transformation framework that reformulates a multi-agent MDP as a special "single-agent" MDP with a sequential structure and can allow employing off-the-shelf single-agent reinforcement learning (SARL) algorithms to efficiently learn corresponding multi-agent tasks. This transformation retains the optimality guarantee of SARL algorithms into cooperative MARL. To instantiate this transformation framework, we propose a Transformed PPO, called T-PPO, which can theoretically perform optimal policy learning in the finite multi-agent MDPs and shows significant outperformance on a large set of cooperative multi-agent tasks.

Sampling methods (e.g., node-wise, layer-wise, or subgraph) has become an indispensable strategy to speed up training large-scale Graph Neural Networks (GNNs). However, existing sampling methods are mostly based on the graph structural information and ignore the dynamicity of optimization, which leads to high variance in estimating the stochastic gradients. The high variance issue can be very pronounced in extremely large graphs, where it results in slow convergence and poor generalization. In this paper, we theoretically analyze the variance of sampling methods and show that, due to the composite structure of empirical risk, the variance of any sampling method can be decomposed into \textit{embedding approximation variance} in the forward stage and \textit{stochastic gradient variance} in the backward stage that necessities mitigating both types of variance to obtain faster convergence rate. We propose a decoupled variance reduction strategy that employs (approximate) gradient information to adaptively sample nodes with minimal variance, and explicitly reduces the variance introduced by embedding approximation. We show theoretically and empirically that the proposed method, even with smaller mini-batch sizes, enjoys a faster convergence rate and entails a better generalization compared to the existing methods.

北京阿比特科技有限公司