亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this note, we introduce a general version of the well-known elliptical potential lemma that is a widely used technique in the analysis of algorithms in sequential learning and decision-making problems. We consider a stochastic linear bandit setting where a decision-maker sequentially chooses among a set of given actions, observes their noisy rewards, and aims to maximize her cumulative expected reward over a decision-making horizon. The elliptical potential lemma is a key tool for quantifying uncertainty in estimating parameters of the reward function, but it requires the noise and the prior distributions to be Gaussian. Our general elliptical potential lemma relaxes this Gaussian requirement which is a highly non-trivial extension for a number of reasons; unlike the Gaussian case, there is no closed-form solution for the covariance matrix of the posterior distribution, the covariance matrix is not a deterministic function of the actions, and the covariance matrix is not decreasing with respect to the semidefinite inequality. While this result is of broad interest, we showcase an application of it to prove an improved Bayesian regret bound for the well-known Thompson sampling algorithm in stochastic linear bandits with changing action sets where prior and noise distributions are general. This bound is minimax optimal up to constants.

相關內容

在概率論和統計學中,協方差矩陣(也稱為自協方差矩陣,色散矩陣,方差矩陣或方差-協方差矩陣)是平方矩陣,給出了給定隨機向量的每對元素之間的協方差。 在矩陣對角線中存在方差,即每個元素與其自身的協方差。

In this paper, we investigate the problem of stochastic multi-level compositional optimization, where the objective function is a composition of multiple smooth but possibly non-convex functions. Existing methods for solving this problem either suffer from sub-optimal sample complexities or need a huge batch size. To address this limitation, we propose a Stochastic Multi-level Variance Reduction method (SMVR), which achieves the optimal sample complexity of $\mathcal{O}\left(1 / \epsilon^{3}\right)$ to find an $\epsilon$-stationary point for non-convex objectives. Furthermore, when the objective function satisfies the convexity or Polyak-Lojasiewicz (PL) condition, we propose a stage-wise variant of SMVR and improve the sample complexity to $\mathcal{O}\left(1 / \epsilon^{2}\right)$ for convex functions or $\mathcal{O}\left(1 /(\mu\epsilon)\right)$ for non-convex functions satisfying the $\mu$-PL condition. The latter result implies the same complexity for $\mu$-strongly convex functions. To make use of adaptive learning rates, we also develop Adaptive SMVR, which achieves the same optimal complexities but converges faster in practice. All our complexities match the lower bounds not only in terms of $\epsilon$ but also in terms of $\mu$ (for PL or strongly convex functions), without using a large batch size in each iteration.

This work shows that a diverse collection of linear optimization methods, when run on general data, fail to overfit, despite lacking any explicit constraints or regularization: with high probability, their trajectories stay near the curve of optimal constrained solutions over the population distribution. This analysis is powered by an elementary but flexible proof scheme which can handle many settings, summarized as follows. Firstly, the data can be general: unlike other implicit bias works, it need not satisfy large margin or other structural conditions, and moreover can arrive sequentially IID, sequentially following a Markov chain, as a batch, and lastly it can have heavy tails. Secondly, while the main analysis is for mirror descent, rates are also provided for the Temporal-Difference fixed-point method from reinforcement learning; all prior high probability analyses in these settings required bounded iterates, bounded updates, bounded noise, or some equivalent. Thirdly, the losses are general, and for instance the logistic and squared losses can be handled simultaneously, unlike other implicit bias works. In all of these settings, not only is low population error guaranteed with high probability, but moreover low sample complexity is guaranteed so long as there exists any low-complexity near-optimal solution, even if the global problem structure and in particular global optima have high complexity.

We propose a projection-free conditional gradient-type algorithm for smooth stochastic multi-level composition optimization, where the objective function is a nested composition of $T$ functions and the constraint set is a closed convex set. Our algorithm assumes access to noisy evaluations of the functions and their gradients, through a stochastic first-order oracle satisfying certain standard unbiasedness and second moment assumptions. We show that the number of calls to the stochastic first-order oracle and the linear-minimization oracle required by the proposed algorithm, to obtain an $\epsilon$-stationary solution, are of order $\mathcal{O}_T(\epsilon^{-2})$ and $\mathcal{O}_T(\epsilon^{-3})$ respectively, where $\mathcal{O}_T$ hides constants in $T$. Notably, the dependence of these complexity bounds on $\epsilon$ and $T$ are separate in the sense that changing one does not impact the dependence of the bounds on the other. Moreover, our algorithm is parameter-free and does not require any (increasing) order of mini-batches to converge unlike the common practice in the analysis of stochastic conditional gradient-type algorithms.

Benign overfitting demonstrates that overparameterized models can perform well on test data while fitting noisy training data. However, it only considers the final min-norm solution in linear regression, which ignores the algorithm information and the corresponding training procedure. In this paper, we generalize the idea of benign overfitting to the whole training trajectory instead of the min-norm solution and derive a time-variant bound based on the trajectory analysis. Starting from the time-variant bound, we further derive a time interval that suffices to guarantee a consistent generalization error for a given feature covariance. Unlike existing approaches, the newly proposed generalization bound is characterized by a time-variant effective dimension of feature covariance. By introducing the time factor, we relax the strict assumption on the feature covariance matrix required in previous benign overfitting under the regimes of overparameterized linear regression with gradient descent. This paper extends the scope of benign overfitting, and experiment results indicate that the proposed bound accords better with empirical evidence.

This work addresses a version of the two-armed Bernoulli bandit problem where the sum of the means of the arms is one (the symmetric two-armed Bernoulli bandit). In a regime where the gap between these means goes to zero and the number of prediction periods approaches infinity, we obtain the leading order terms of the expected regret and pseudoregret for this problem by associating each of them with a solution of a linear parabolic partial differential equation. Our results improve upon the previously known results; specifically we explicitly compute the leading order term of the optimal regret and pseudoregret in three different scaling regimes for the gap. Additionally, we obtain new non-asymptotic bounds for any given time horizon.

In this paper, we consider learning scenarios where the learned model is evaluated under an unknown test distribution which potentially differs from the training distribution (i.e. distribution shift). The learner has access to a family of weight functions such that the test distribution is a reweighting of the training distribution under one of these functions, a setting typically studied under the name of Distributionally Robust Optimization (DRO). We consider the problem of deriving regret bounds in the classical learning theory setting, and require that the resulting regret bounds hold uniformly for all potential test distributions. We show that the DRO formulation does not guarantee uniformly small regret under distribution shift. We instead propose an alternative method called Minimax Regret Optimization (MRO), and show that under suitable conditions this method achieves uniformly low regret across all test distributions. We also adapt our technique to have stronger guarantees when the test distributions are heterogeneous in their similarity to the training data. Given the widespead optimization of worst case risks in current approaches to robust machine learning, we believe that MRO can be a strong alternative to address distribution shift scenarios.

We propose a general and scalable approximate sampling strategy for probabilistic models with discrete variables. Our approach uses gradients of the likelihood function with respect to its discrete inputs to propose updates in a Metropolis-Hastings sampler. We show empirically that this approach outperforms generic samplers in a number of difficult settings including Ising models, Potts models, restricted Boltzmann machines, and factorial hidden Markov models. We also demonstrate the use of our improved sampler for training deep energy-based models on high dimensional discrete data. This approach outperforms variational auto-encoders and existing energy-based models. Finally, we give bounds showing that our approach is near-optimal in the class of samplers which propose local updates.

Stochastic gradient Markov chain Monte Carlo (SGMCMC) has become a popular method for scalable Bayesian inference. These methods are based on sampling a discrete-time approximation to a continuous time process, such as the Langevin diffusion. When applied to distributions defined on a constrained space, such as the simplex, the time-discretisation error can dominate when we are near the boundary of the space. We demonstrate that while current SGMCMC methods for the simplex perform well in certain cases, they struggle with sparse simplex spaces; when many of the components are close to zero. However, most popular large-scale applications of Bayesian inference on simplex spaces, such as network or topic models, are sparse. We argue that this poor performance is due to the biases of SGMCMC caused by the discretization error. To get around this, we propose the stochastic CIR process, which removes all discretization error and we prove that samples from the stochastic CIR process are asymptotically unbiased. Use of the stochastic CIR process within a SGMCMC algorithm is shown to give substantially better performance for a topic model and a Dirichlet process mixture model than existing SGMCMC approaches.

In this work, we consider the distributed optimization of non-smooth convex functions using a network of computing units. We investigate this problem under two regularity assumptions: (1) the Lipschitz continuity of the global objective function, and (2) the Lipschitz continuity of local individual functions. Under the local regularity assumption, we provide the first optimal first-order decentralized algorithm called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. A notable aspect of this result is that, for non-smooth functions, while the dominant term of the error is in $O(1/\sqrt{t})$, the structure of the communication network only impacts a second-order term in $O(1/t)$, where $t$ is time. In other words, the error due to limits in communication resources decreases at a fast rate even in the case of non-strongly-convex objective functions. Under the global regularity assumption, we provide a simple yet efficient algorithm called distributed randomized smoothing (DRS) based on a local smoothing of the objective function, and show that DRS is within a $d^{1/4}$ multiplicative factor of the optimal convergence rate, where $d$ is the underlying dimension.

In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.

北京阿比特科技有限公司