亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Optimal model reduction for large-scale linear dynamical systems is studied. In contrast to most existing works, the systems under consideration are not required to be stable, neither in discrete nor in continuous time. As a consequence, the underlying rational transfer functions are allowed to have poles in general domains in the complex plane. In particular, this covers the case of specific conservative partial differential equations such as the linear Schr\"odinger and the undamped linear wave equation with spectra on the imaginary axis. By an appropriate modification of the classical continuous time Hardy space $\mathcal{H}_2$, a new $\mathcal{H}_2$ like optimal model reduction problem is introduced and first order optimality conditions are derived. As in the classical $\mathcal{H}_2$ case, these conditions exhibit a rational Hermite interpolation structure for which an iterative model reduction algorithm is proposed. Numerical examples demonstrate the effectiveness of the new method.

相關內容

Digital credentials represent a cornerstone of digital identity on the Internet. To achieve privacy, certain functionalities in credentials should be implemented. One is selective disclosure, which allows users to disclose only the claims or attributes they want. This paper presents a novel approach to selective disclosure that combines Merkle hash trees and Boneh-Lynn-Shacham (BLS) signatures. Combining these approaches, we achieve selective disclosure of claims in a single credential and creation of a verifiable presentation containing selectively disclosed claims from multiple credentials signed by different parties. Besides selective disclosure, we enable issuing credentials signed by multiple issuers using this approach.

We present Surjective Sequential Neural Likelihood (SSNL) estimation, a novel method for simulation-based inference in models where the evaluation of the likelihood function is not tractable and only a simulator that can generate synthetic data is available. SSNL fits a dimensionality-reducing surjective normalizing flow model and uses it as a surrogate likelihood function which allows for conventional Bayesian inference using either Markov chain Monte Carlo methods or variational inference. By embedding the data in a low-dimensional space, SSNL solves several issues previous likelihood-based methods had when applied to high-dimensional data sets that, for instance, contain non-informative data dimensions or lie along a lower-dimensional manifold. We evaluate SSNL on a wide variety of experiments and show that it generally outperforms contemporary methods used in simulation-based inference, for instance, on a challenging real-world example from astrophysics which models the magnetic field strength of the sun using a solar dynamo model.

We propose a novel algorithm for the support estimation of partially known Gaussian graphical models that incorporates prior information about the underlying graph. In contrast to classical approaches that provide a point estimate based on a maximum likelihood or a maximum a posteriori criterion using (simple) priors on the precision matrix, we consider a prior on the graph and rely on annealed Langevin diffusion to generate samples from the posterior distribution. Since the Langevin sampler requires access to the score function of the underlying graph prior, we use graph neural networks to effectively estimate the score from a graph dataset (either available beforehand or generated from a known distribution). Numerical experiments demonstrate the benefits of our approach.

Finite sample inference for Cox models is an important problem in many settings, such as clinical trials. Bayesian procedures provide a means for finite sample inference and incorporation of prior information if MCMC algorithms and posteriors are well behaved. On the other hand, estimation procedures should also retain inferential properties in high dimensional settings. In addition, estimation procedures should be able to incorporate constraints and multilevel modeling such as cure models and frailty models in a straightforward manner. In order to tackle these modeling challenges, we propose a uniformly ergodic Gibbs sampler for a broad class of convex set constrained multilevel Cox models. We develop two key strategies. First, we exploit a connection between Cox models and negative binomial processes through the Poisson process to reduce Bayesian computation to iterative Gaussian sampling. Next, we appeal to sufficient dimension reduction to address the difficult computation of nonparametric baseline hazards, allowing for the collapse of the Markov transition operator within the Gibbs sampler based on sufficient statistics. We demonstrate our approach using open source data and simulations.

This paper delves into a nonparametric estimation approach for the interaction function within diffusion-type particle system models. We introduce two estimation methods based upon an empirical risk minimization. Our study encompasses an analysis of the stochastic and approximation errors associated with both procedures, along with an examination of certain minimax lower bounds. In particular, we show that there is a natural metric under which the corresponding minimax estimation error of the interaction function converges to zero with parametric rate. This result is rather suprising given complexity of the underlying estimation problem and rather large classes of interaction functions for which the above parametric rate holds.

The scale function holds significant importance within the fluctuation theory of Levy processes, particularly in addressing exit problems. However, its definition is established through the Laplace transform, thereby lacking explicit representations in general. This paper introduces a novel series representation for this scale function, employing Laguerre polynomials to construct a uniformly convergent approximate sequence. Additionally, we derive statistical inference based on specific discrete observations, presenting estimators of scale functions that are asymptotically normal.

Clustering is one of the most fundamental tools in data science and machine learning, and k-means clustering is one of the most common such methods. There is a variety of approximate algorithms for the k-means problem, but computing the globally optimal solution is in general NP-hard. In this paper we consider the k-means problem for instances with low dimensional data and formulate it as a structured concave assignment problem. This allows us to exploit the low dimensional structure and solve the problem to global optimality within reasonable time for large data sets with several clusters. The method builds on iteratively solving a small concave problem and a large linear programming problem. This gives a sequence of feasible solutions along with bounds which we show converges to zero optimality gap. The paper combines methods from global optimization theory to accelerate the procedure, and we provide numerical results on their performance.

We consider the application of a subspace migration (SM) algorithm to quickly identify small objects in microwave imaging. In various problems, it is easy to measure the diagonal elements of the scattering matrix if the location of the transmitter and the receiver is the same. To address this issue, several studies have been conducted by setting the diagonal elements to zero. In this paper, we generalize the imaging problem by setting diagonal elements of the scattering matrix as a constant with the application of SM. To show the applicability of SM and its dependence on the constant, we show that the imaging function of SM can be represented in terms of an infinite series of the Bessel functions of integer order, antenna number and arrangement, and applied constant. This result enables us to discover some further properties, including the unique determination of objects. We also demonstrated simulation results with synthetic data to support the theoretical result.

There is increasing interest in the application large language models (LLMs) to the medical field, in part because of their impressive performance on medical exam questions. While promising, exam questions do not reflect the complexity of real patient-doctor interactions. In reality, physicians' decisions are shaped by many complex factors, such as patient compliance, personal experience, ethical beliefs, and cognitive bias. Taking a step toward understanding this, our hypothesis posits that when LLMs are confronted with clinical questions containing cognitive biases, they will yield significantly less accurate responses compared to the same questions presented without such biases. In this study, we developed BiasMedQA, a benchmark for evaluating cognitive biases in LLMs applied to medical tasks. Using BiasMedQA we evaluated six LLMs, namely GPT-4, Mixtral-8x70B, GPT-3.5, PaLM-2, Llama 2 70B-chat, and the medically specialized PMC Llama 13B. We tested these models on 1,273 questions from the US Medical Licensing Exam (USMLE) Steps 1, 2, and 3, modified to replicate common clinically-relevant cognitive biases. Our analysis revealed varying effects for biases on these LLMs, with GPT-4 standing out for its resilience to bias, in contrast to Llama 2 70B-chat and PMC Llama 13B, which were disproportionately affected by cognitive bias. Our findings highlight the critical need for bias mitigation in the development of medical LLMs, pointing towards safer and more reliable applications in healthcare.

In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.

北京阿比特科技有限公司