Solving high-dimensional partial differential equations (PDEs) is a major challenge in scientific computing. We develop a new numerical method for solving elliptic-type PDEs by adapting the Q-learning algorithm in reinforcement learning. Our "Q-PDE" algorithm is mesh-free and therefore has the potential to overcome the curse of dimensionality. Using a neural tangent kernel (NTK) approach, we prove that the neural network approximator for the PDE solution, trained with the Q-PDE algorithm, converges to the trajectory of an infinite-dimensional ordinary differential equation (ODE) as the number of hidden units $\rightarrow \infty$. For monotone PDE (i.e. those given by monotone operators, which may be nonlinear), despite the lack of a spectral gap in the NTK, we then prove that the limit neural network, which satisfies the infinite-dimensional ODE, converges in $L^2$ to the PDE solution as the training time $\rightarrow \infty$. More generally, we can prove that any fixed point of the wide-network limit for the Q-PDE algorithm is a solution of the PDE (not necessarily under the monotone condition). The numerical performance of the Q-PDE algorithm is studied for several elliptic PDEs.
We develop three new methods to implement any Linear Combination of Unitaries (LCU), a powerful quantum algorithmic tool with diverse applications. While the standard LCU procedure requires several ancilla qubits and sophisticated multi-qubit controlled operations, our methods consume significantly fewer quantum resources. The first method (Single-Ancilla LCU) estimates expectation values of observables with respect to any quantum state prepared by an LCU procedure while requiring only a single ancilla qubit, and quantum circuits of shorter depths. The second approach (Analog LCU) is a simple, physically motivated, continuous-time analogue of LCU, tailored to hybrid qubit-qumode systems. The third method (Ancilla-free LCU) requires no ancilla qubit at all and is useful when we are interested in the projection of a quantum state (prepared by the LCU procedure) in some subspace of interest. We apply the first two techniques to develop new quantum algorithms for a wide range of practical problems, ranging from Hamiltonian simulation, ground state preparation and property estimation, and quantum linear systems. Remarkably, despite consuming fewer quantum resources they retain a provable quantum advantage. The third technique allows us to connect discrete and continuous-time quantum walks with their classical counterparts. It also unifies the recently developed optimal quantum spatial search algorithms in both these frameworks, and leads to the development of new ones. Additionally, using this method, we establish a relationship between discrete-time and continuous-time quantum walks, making inroads into a long-standing open problem.
Recently, intermittent computing (IC) has received tremendous attention due to its high potential in perpetual sensing for Internet-of-Things (IoT). By harvesting ambient energy, battery-free devices can perform sensing intermittently without maintenance, thus significantly improving IoT sustainability. To build a practical intermittently-powered sensing system, efficient routing across battery-free devices for data delivery is essential. However, the intermittency of these devices brings new challenges, rendering existing routing protocols inapplicable. In this paper, we propose RICS, the first-of-its-kind routing scheme tailored for intermittently-powered sensing systems. RICS features two major designs, with the goal of achieving low-latency data delivery on a network built with battery-free devices. First, RICS incorporates a fast topology construction protocol for each IC node to establish a path towards the sink node with the least hop count. Second, RICS employs a low-latency message forwarding protocol, which incorporates an efficient synchronization mechanism and a novel technique called pendulum-sync to avoid the time-consuming repeated node synchronization. Our evaluation based on an implementation in OMNeT++ and comprehensive experiments with varying system settings show that RICS can achieve orders of magnitude latency reduction in data delivery compared with the baselines.
Image blending aims to combine multiple images seamlessly. It remains challenging for existing 2D-based methods, especially when input images are misaligned due to differences in 3D camera poses and object shapes. To tackle these issues, we propose a 3D-aware blending method using generative Neural Radiance Fields (NeRF), including two key components: 3D-aware alignment and 3D-aware blending. For 3D-aware alignment, we first estimate the camera pose of the reference image with respect to generative NeRFs and then perform 3D local alignment for each part. To further leverage 3D information of the generative NeRF, we propose 3D-aware blending that directly blends images on the NeRF's latent representation space, rather than raw pixel space. Collectively, our method outperforms existing 2D baselines, as validated by extensive quantitative and qualitative evaluations with FFHQ and AFHQ-Cat.
Winograd is generally utilized to optimize convolution performance and computational efficiency because of the reduced multiplication operations, but the reliability issues brought by winograd are usually overlooked. In this work, we observe the great potential of winograd convolution in improving neural network (NN) fault tolerance. Based on the observation, we evaluate winograd convolution fault tolerance comprehensively from different granularities ranging from models, layers, and operation types for the first time. Then, we explore the use of inherent fault tolerance of winograd convolution for cost-effective NN protection against soft errors. Specifically, we mainly investigate how winograd convolution can be effectively incorporated with classical fault-tolerant design approaches including triple modular redundancy (TMR), fault-aware retraining, and constrained activation functions. According to our experiments, winograd convolution can reduce the fault-tolerant design overhead by 55.77\% on average without any accuracy loss compared to standard convolution, and further reduce the computing overhead by 17.24\% when the inherent fault tolerance of winograd convolution is considered. When it is applied on fault-tolerant neural networks enhanced with fault-aware retraining and constrained activation functions, the resulting model accuracy generally shows significant improvement in presence of various faults.
This work is the first exploration of proof-theoretic semantics for a substructural logic. It focuses on the base-extension semantics (B-eS) for intuitionistic multiplicative linear logic (IMLL). The starting point is a review of Sandqvist's B-eS for intuitionistic propositional logic (IPL), for which we propose an alternative treatment of conjunction that takes the form of the generalized elimination rule for the connective. The resulting semantics is shown to be sound and complete. This motivates our main contribution, a B-eS for IMLL, in which the definitions of the logical constants all take the form of their elimination rule and for which soundness and completeness are established.
Heterogeneous graph neural networks (HGNNs) have exhibited exceptional efficacy in modeling the complex heterogeneity in heterogeneous information networks (HINs). The critical advantage of HGNNs is their ability to handle diverse node and edge types in HINs by extracting and utilizing the abundant semantic information for effective representation learning. However, as a widespread phenomenon in many real-world scenarios, the class-imbalance distribution in HINs creates a performance bottleneck for existing HGNNs. Apart from the quantity imbalance of nodes, another more crucial and distinctive challenge in HINs is semantic imbalance. Minority classes in HINs often lack diverse and sufficient neighbor nodes, resulting in biased and incomplete semantic information. This semantic imbalance further compounds the difficulty of accurately classifying minority nodes, leading to the performance degradation of HGNNs. To tackle the imbalance of minority classes and supplement their inadequate semantics, we present the first method for the semantic imbalance problem in imbalanced HINs named Semantic-aware Node Synthesis (SNS). By assessing the influence on minority classes, SNS adaptively selects the heterogeneous neighbor nodes and augments the network with synthetic nodes while preserving the minority semantics. In addition, we introduce two regularization approaches for HGNNs that constrain the representation of synthetic nodes from both semantic and class perspectives to effectively suppress the potential noises from synthetic nodes, facilitating more expressive embeddings for classification. The comprehensive experimental study demonstrates that SNS consistently outperforms existing methods by a large margin in different benchmark datasets.
We consider quantile optimization of black-box functions that are estimated with noise. We propose two new iterative three-timescale local search algorithms. The first algorithm uses an appropriately modified finite-difference-based gradient estimator that requires $2d$ + 1 samples of the black-box function per iteration of the algorithm, where $d$ is the number of decision variables (dimension of the input vector). For higher-dimensional problems, this algorithm may not be practical if the black-box function estimates are expensive. The second algorithm employs a simultaneous-perturbation-based gradient estimator that uses only three samples for each iteration regardless of problem dimension. Under appropriate conditions, we show the almost sure convergence of both algorithms. In addition, for the class of strongly convex functions, we further establish their (finite-time) convergence rate through a novel fixed-point argument. Simulation experiments indicate that the algorithms work well on a variety of test problems and compare well with recently proposed alternative methods.
Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.
It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.
Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.