In this work, we detail a procedure to construct a reduced order model on the basis of frequency-domain data, that preserves the non-strictly passive property and the port-Hamiltonian structure. The proposed scheme is based on Benner et al. (2020) contribution, which has been adapted (i) to handle non-strictly passive model, and (ii) to handle numerical issues observed when applying the Loewner framework on complex configurations. We validate the proposed scheme on a very complex two-dimensional wave equation, for which the discretized version preserves the port-Hamiltoninan form.
In this work, we explore a framework for contextual decision-making to study how the relevance and quantity of past data affects the performance of a data-driven policy. We analyze a contextual Newsvendor problem in which a decision-maker needs to trade-off between an underage and an overage cost in the face of uncertain demand. We consider a setting in which past demands observed under ``close by'' contexts come from close by distributions and analyze the performance of data-driven algorithms through a notion of context-dependent worst-case expected regret. We analyze the broad class of Weighted Empirical Risk Minimization (WERM) policies which weigh past data according to their similarity in the contextual space. This class includes classical policies such as ERM, k-Nearest Neighbors and kernel-based policies. Our main methodological contribution is to characterize exactly the worst-case regret of any WERM policy on any given configuration of contexts. To the best of our knowledge, this provides the first understanding of tight performance guarantees in any contextual decision-making problem, with past literature focusing on upper bounds via concentration inequalities. We instead take an optimization approach, and isolate a structure in the Newsvendor loss function that allows to reduce the infinite-dimensional optimization problem over worst-case distributions to a simple line search. This in turn allows us to unveil fundamental insights that were obfuscated by previous general-purpose bounds. We characterize actual guaranteed performance as a function of the contexts, as well as granular insights on the learning curve of algorithms.
The objective of a style transfer is to maintain the content of an image while transferring the style of another image. However, conventional research on style transfer has a significant limitation in preserving facial landmarks, such as the eyes, nose, and mouth, which are crucial for maintaining the identity of the image. In Korean portraits, the majority of individuals wear "Gat", a type of headdress exclusively worn by men. Owing to its distinct characteristics from the hair in ID photos, transferring the "Gat" is challenging. To address this issue, this study proposes a deep learning network that can perform style transfer, including the "Gat", while preserving the identity of the face. Unlike existing style transfer approaches, the proposed method aims to preserve texture, costume, and the "Gat" on the style image. The Generative Adversarial Network forms the backbone of the proposed network. The color, texture, and intensity were extracted differently based on the characteristics of each block and layer of the pre-trained VGG-16, and only the necessary elements during training were preserved using a facial landmark mask. The head area was presented using the eyebrow area to transfer the "Gat". Furthermore, the identity of the face was retained, and style correlation was considered based on the Gram matrix. The proposed approach demonstrated superior transfer and preservation performance compared to previous studies.
We consider nonlinear delay differential and renewal equations with infinite delay. We extend the work of Gyllenberg et al, Appl. Math. Comput. (2018) by introducing a unifying abstract framework and derive a finite-dimensional approximating system via pseudospectral discretization. For renewal equations, via integration we consider a reformulation in a space of absolutely continuous functions that ensures that point evaluation is well defined. We prove the one-to-one correspondence of equilibria between the original equation and its approximation, and that linearization and discretization commute. Our most important result is the proof of convergence of the characteristic roots of the pseudospectral approximation of the linear(ized) equations, which ensures that the finite-dimensional system correctly reproduces the stability properties of the original linear equation if the dimension of the approximation is large enough. This result is illustrated with several numerical tests, which also demonstrate the effectiveness of the approach for the bifurcation analysis of equilibria of nonlinear equations.
Many robotic surgical systems have been developed with micro-sized biopsy forceps for tissue manipulation. However, these systems often lack force sensing at the tool side. This paper presents a vision-based force sensing method for micro-sized biopsy forceps. A miniature sensing module adaptive to common biopsy forceps is proposed, consisting of a flexure, a camera, and a customised target. The deformation of the flexure is obtained by the camera estimating the pose variation of the top-mounted target. Then, the external force applied to the sensing module is calculated using the flexure's displacement and stiffness matrix. Integrating the sensing module into the biopsy forceps, in conjunction with a single-axial force sensor at the proximal end, we equip the forceps with haptic sensing capabilities. Mathematical equations are derived to estimate the multi-modal force sensing of the haptics-enabled forceps, including pushing/pulling forces (Mode-I) and grasping forces (Mode-II). A series of experiments on phantoms and ex vivo tissues are conducted to verify the feasibility of the proposed design and method. Results indicate that the haptics-enabled forceps can achieve multi-modal force estimation effectively and potentially realize autonomous robotic tissue grasping procedures with controlled forces.
Deterministic finite automata (DFA) are a classic tool for high throughput matching of regular expressions, both in theory and practice. Due to their high space consumption, extensive research has been devoted to compressed representations of DFAs that still support efficient pattern matching queries. Kumar~et~al.~[SIGCOMM 2006] introduced the \emph{delayed deterministic finite automaton} (\ddfa{}) which exploits the large redundancy between inter-state transitions in the automaton. They showed it to obtain up to two orders of magnitude compression of real-world DFAs, and their work formed the basis of numerous subsequent results. Their algorithm, as well as later algorithms based on their idea, have an inherent quadratic-time bottleneck, as they consider every pair of states to compute the optimal compression. In this work we present a simple, general framework based on locality-sensitive hashing for speeding up these algorithms to achieve sub-quadratic construction times for \ddfa{}s. We apply the framework to speed up several algorithms to near-linear time, and experimentally evaluate their performance on real-world regular expression sets extracted from modern intrusion detection systems. We find an order of magnitude improvement in compression times, with either little or no loss of compression, or even significantly better compression in some cases.
The operation of machine tools often demands a highly accurate knowledge of the tool center point's (TCP) position. The displacement of the TCP over time can be inferred from thermal models, which comprise a set of geometrically coupled heat equations. Each of these equations represents the temperature in part of the machine, and they are often formulated on complicated geometries. The accuracy of the TCP prediction depends highly on the accuracy of the model parameters, such as heat exchange parameters, and the initial temperature. Thus it is of utmost interest to determine the influence of these parameters on the TCP displacement prediction. In turn, the accuracy of the parameter estimate is essentially determined by the measurement accuracy and the sensor placement. Determining the accuracy of a given sensor configuration is a key prerequisite of optimal sensor placement. We develop here a thermal model for a particular machine tool. On top of this model we propose two numerical algorithms to evaluate any given thermal sensor configuration with respect to its accuracy. We compute the posterior variances from the posterior covariance matrix with respect to an uncertain initial temperature field. The full matrix is dense and potentially very large, depending on the model size. Thus, we apply a low-rank method to approximate relevant entries, i.e. the variances on its diagonal. We first present a straightforward way to compute this approximation which requires computation of the model sensitivities with with respect to the initial values. Additionally, we present a low-rank tensor method which exploits the underlying system structure. We compare the efficiency of both algorithms with respect to runtime and memory requirements and discuss their respective advantages with regard to optimal sensor placement problems.
The accurate and efficient evaluation of Newtonian potentials over general 2-D domains is important for the numerical solution of Poisson's equation and volume integral equations. In this paper, we present a simple and efficient high-order algorithm for computing the Newtonian potential over a planar domain discretized by an unstructured mesh. The algorithm is based on the use of Green's third identity for transforming the Newtonian potential into a collection of layer potentials over the boundaries of the mesh elements, which can be easily evaluated by the Helsing-Ojala method. One important component of our algorithm is the use of high-order (up to order 20) bivariate polynomial interpolation in the monomial basis, for which we provide extensive justification. The performance of our algorithm is illustrated through several numerical experiments.
A Low-rank Spectral Optimization Problem (LSOP) minimizes a linear objective subject to multiple two-sided linear matrix inequalities intersected with a low-rank and spectral constrained domain set. Although solving LSOP is, in general, NP-hard, its partial convexification (i.e., replacing the domain set by its convex hull) termed "LSOP-R," is often tractable and yields a high-quality solution. This motivates us to study the strength of LSOP-R. Specifically, we derive rank bounds for any extreme point of the feasible set of LSOP-R and prove their tightness for the domain sets with different matrix spaces. The proposed rank bounds recover two well-known results in the literature from a fresh angle and also allow us to derive sufficient conditions under which the relaxation LSOP-R is equivalent to the original LSOP. To effectively solve LSOP-R, we develop a column generation algorithm with a vector-based convex pricing oracle, coupled with a rank-reduction algorithm, which ensures the output solution satisfies the theoretical rank bound. Finally, we numerically verify the strength of the LSOP-R and the efficacy of the proposed algorithms.
We revisit the problem of computing with noisy information considered in Feige et al. 1994, which includes computing the OR function from noisy queries, and computing the MAX, SEARCH and SORT functions from noisy pairwise comparisons. For $K$ given elements, the goal is to correctly recover the desired function with probability at least $1-\delta$ when the outcome of each query is flipped with probability $p$. We consider both the adaptive sampling setting where each query can be adaptively designed based on past outcomes, and the non-adaptive sampling setting where the query cannot depend on past outcomes. The prior work provides tight bounds on the worst-case query complexity in terms of the dependence on $K$. However, the upper and lower bounds do not match in terms of the dependence on $\delta$ and $p$. We improve the lower bounds for all the four functions under both adaptive and non-adaptive query models. Most of our lower bounds match the upper bounds up to constant factors when either $p$ or $\delta$ is bounded away from $0$, while the ratio between the best prior upper and lower bounds goes to infinity when $p\rightarrow 0$ or $p\rightarrow 1/2$. On the other hand, we also provide matching upper and lower bounds for the number of queries in expectation, improving both the upper and lower bounds for the variable-length query model.
Knowledge graph embedding (KGE) is a increasingly popular technique that aims to represent entities and relations of knowledge graphs into low-dimensional semantic spaces for a wide spectrum of applications such as link prediction, knowledge reasoning and knowledge completion. In this paper, we provide a systematic review of existing KGE techniques based on representation spaces. Particularly, we build a fine-grained classification to categorise the models based on three mathematical perspectives of the representation spaces: (1) Algebraic perspective, (2) Geometric perspective, and (3) Analytical perspective. We introduce the rigorous definitions of fundamental mathematical spaces before diving into KGE models and their mathematical properties. We further discuss different KGE methods over the three categories, as well as summarise how spatial advantages work over different embedding needs. By collating the experimental results from downstream tasks, we also explore the advantages of mathematical space in different scenarios and the reasons behind them. We further state some promising research directions from a representation space perspective, with which we hope to inspire researchers to design their KGE models as well as their related applications with more consideration of their mathematical space properties.