亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Automatic discourse processing is bottlenecked by data: current discourse formalisms pose highly demanding annotation tasks involving large taxonomies of discourse relations, making them inaccessible to lay annotators. This work instead adopts the linguistic framework of Questions Under Discussion (QUD) for discourse analysis and seeks to derive QUD structures automatically. QUD views each sentence as an answer to a question triggered in prior context; thus, we characterize relationships between sentences as free-form questions, in contrast to exhaustive fine-grained taxonomies. We develop the first-of-its-kind QUD parser that derives a dependency structure of questions over full documents, trained using a large, crowdsourced question-answering dataset DCQA (Ko et al., 2022). Human evaluation results show that QUD dependency parsing is possible for language models trained with this crowdsourced, generalizable annotation scheme. We illustrate how our QUD structure is distinct from RST trees, and demonstrate the utility of QUD analysis in the context of document simplification. Our findings show that QUD parsing is an appealing alternative for automatic discourse processing.

相關內容

Dialogue discourse parsing aims to uncover the internal structure of a multi-participant conversation by finding all the discourse~\emph{links} and corresponding~\emph{relations}. Previous work either treats this task as a series of independent multiple-choice problems, in which the link existence and relations are decoded separately, or the encoding is restricted to only local interaction, ignoring the holistic structural information. In contrast, we propose a principled method that improves upon previous work from two perspectives: encoding and decoding. From the encoding side, we perform structured encoding on the adjacency matrix followed by the matrix-tree learning algorithm, where all discourse links and relations in the dialogue are jointly optimized based on latent tree-level distribution. From the decoding side, we perform structured inference using the modified Chiu-Liu-Edmonds algorithm, which explicitly generates the labeled multi-root non-projective spanning tree that best captures the discourse structure. In addition, unlike in previous work, we do not rely on hand-crafted features; this improves the model's robustness. Experiments show that our method achieves new state-of-the-art, surpassing the previous model by 2.3 on STAC and 1.5 on Molweni (F1 scores). \footnote{Code released at~\url{//github.com/chijames/structured_dialogue_discourse_parsing}.}

One core assumption typically adopted for valid causal inference is that of no interference between experimental units, i.e., the outcome of an experimental unit is unaffected by the treatments assigned to other experimental units. This assumption can be violated in real-life experiments, which significantly complicates the task of causal inference as one must disentangle direct treatment effects from ``spillover'' effects. Current methodologies are lacking, as they cannot handle arbitrary, unknown interference structures to permit inference on causal estimands. We present a general framework to address the limitations of existing approaches. Our framework is based on the new concept of the ``degree of interference'' (DoI). The DoI is a unit-level latent variable that captures the latent structure of interference. We also develop a data augmentation algorithm that adopts a blocked Gibbs sampler and Bayesian nonparametric methodology to perform inferences on the estimands under our framework. We illustrate the DoI concept and properties of our Bayesian methodology via extensive simulation studies and an analysis of a randomized experiment investigating the impact of a cash transfer program for which interference is a critical concern. Ultimately, our framework enables us to infer causal effects without strong structural assumptions on interference.

We propose a graph-based event extraction framework JSEEGraph that approaches the task of event extraction as general graph parsing in the tradition of Meaning Representation Parsing. It explicitly encodes entities and events in a single semantic graph, and further has the flexibility to encode a wider range of additional IE relations and jointly infer individual tasks. JSEEGraph performs in an end-to-end manner via general graph parsing: (1) instead of flat sequence labelling, nested structures between entities/triggers are efficiently encoded as separate nodes in the graph, allowing for nested and overlapping entities and triggers; (2) both entities, relations, and events can be encoded in the same graph, where entities and event triggers are represented as nodes and entity relations and event arguments are constructed via edges; (3) joint inference avoids error propagation and enhances the interpolation of different IE tasks. We experiment on two benchmark datasets of varying structural complexities; ACE05 and Rich ERE, covering three languages: English, Chinese, and Spanish. Experimental results show that JSEEGraph can handle nested event structures, that it is beneficial to solve different IE tasks jointly, and that event argument extraction in particular benefits from entity extraction. Our code and models are released as open-source.

This paper presents an exhaustive quantitative and qualitative evaluation of Large Language Models (LLMs) for Knowledge Graph (KG) construction and reasoning. We employ eight distinct datasets that encompass aspects including entity, relation and event extraction, link prediction, and question answering. Empirically, our findings suggest that GPT-4 outperforms ChatGPT in the majority of tasks and even surpasses fine-tuned models in certain reasoning and question-answering datasets. Moreover, our investigation extends to the potential generalization ability of LLMs for information extraction, which culminates in the presentation of the Virtual Knowledge Extraction task and the development of the VINE dataset. Drawing on these empirical findings, we further propose AutoKG, a multi-agent-based approach employing LLMs for KG construction and reasoning, which aims to chart the future of this field and offer exciting opportunities for advancement. We anticipate that our research can provide invaluable insights for future undertakings of KG\footnote{Code and datasets will be available in //github.com/zjunlp/AutoKG.

Contrastive loss has been increasingly used in learning representations from multiple modalities. In the limit, the nature of the contrastive loss encourages modalities to exactly match each other in the latent space. Yet it remains an open question how the modality alignment affects the downstream task performance. In this paper, based on an information-theoretic argument, we first prove that exact modality alignment is sub-optimal in general for downstream prediction tasks. Hence we advocate that the key of better performance lies in meaningful latent modality structures instead of perfect modality alignment. To this end, we propose three general approaches to construct latent modality structures. Specifically, we design 1) a deep feature separation loss for intra-modality regularization; 2) a Brownian-bridge loss for inter-modality regularization; and 3) a geometric consistency loss for both intra- and inter-modality regularization. Extensive experiments are conducted on two popular multi-modal representation learning frameworks: the CLIP-based two-tower model and the ALBEF-based fusion model. We test our model on a variety of tasks including zero/few-shot image classification, image-text retrieval, visual question answering, visual reasoning, and visual entailment. Our method achieves consistent improvements over existing methods, demonstrating the effectiveness and generalizability of our proposed approach on latent modality structure regularization.

Despite the recent progress in deep learning, most approaches still go for a silo-like solution, focusing on learning each task in isolation: training a separate neural network for each individual task. Many real-world problems, however, call for a multi-modal approach and, therefore, for multi-tasking models. Multi-task learning (MTL) aims to leverage useful information across tasks to improve the generalization capability of a model. This thesis is concerned with multi-task learning in the context of computer vision. First, we review existing approaches for MTL. Next, we propose several methods that tackle important aspects of multi-task learning. The proposed methods are evaluated on various benchmarks. The results show several advances in the state-of-the-art of multi-task learning. Finally, we discuss several possibilities for future work.

Commonsense causality reasoning (CCR) aims at identifying plausible causes and effects in natural language descriptions that are deemed reasonable by an average person. Although being of great academic and practical interest, this problem is still shadowed by the lack of a well-posed theoretical framework; existing work usually relies on deep language models wholeheartedly, and is potentially susceptible to confounding co-occurrences. Motivated by classical causal principles, we articulate the central question of CCR and draw parallels between human subjects in observational studies and natural languages to adopt CCR to the potential-outcomes framework, which is the first such attempt for commonsense tasks. We propose a novel framework, ROCK, to Reason O(A)bout Commonsense K(C)ausality, which utilizes temporal signals as incidental supervision, and balances confounding effects using temporal propensities that are analogous to propensity scores. The ROCK implementation is modular and zero-shot, and demonstrates good CCR capabilities on various datasets.

Medical Visual Question Answering (VQA) is a combination of medical artificial intelligence and popular VQA challenges. Given a medical image and a clinically relevant question in natural language, the medical VQA system is expected to predict a plausible and convincing answer. Although the general-domain VQA has been extensively studied, the medical VQA still needs specific investigation and exploration due to its task features. In the first part of this survey, we cover and discuss the publicly available medical VQA datasets up to date about the data source, data quantity, and task feature. In the second part, we review the approaches used in medical VQA tasks. In the last part, we analyze some medical-specific challenges for the field and discuss future research directions.

Knowledge base question answering (KBQA) aims to answer a question over a knowledge base (KB). Recently, a large number of studies focus on semantically or syntactically complicated questions. In this paper, we elaborately summarize the typical challenges and solutions for complex KBQA. We begin with introducing the background about the KBQA task. Next, we present the two mainstream categories of methods for complex KBQA, namely semantic parsing-based (SP-based) methods and information retrieval-based (IR-based) methods. We then review the advanced methods comprehensively from the perspective of the two categories. Specifically, we explicate their solutions to the typical challenges. Finally, we conclude and discuss some promising directions for future research.

Most existing works in visual question answering (VQA) are dedicated to improving the accuracy of predicted answers, while disregarding the explanations. We argue that the explanation for an answer is of the same or even more importance compared with the answer itself, since it makes the question and answering process more understandable and traceable. To this end, we propose a new task of VQA-E (VQA with Explanation), where the computational models are required to generate an explanation with the predicted answer. We first construct a new dataset, and then frame the VQA-E problem in a multi-task learning architecture. Our VQA-E dataset is automatically derived from the VQA v2 dataset by intelligently exploiting the available captions. We have conducted a user study to validate the quality of explanations synthesized by our method. We quantitatively show that the additional supervision from explanations can not only produce insightful textual sentences to justify the answers, but also improve the performance of answer prediction. Our model outperforms the state-of-the-art methods by a clear margin on the VQA v2 dataset.

北京阿比特科技有限公司