The Bidirectional Encoder Representations from Transformers (BERT) is currently one of the most important and state-of-the-art models for natural language. However, it has also been shown that for domain-specific tasks it is helpful to pretrain BERT on a domain-specific corpus. In this paper, we present TourBERT, a pretrained language model for tourism. We describe how TourBERT was developed and evaluated. The evaluations show that TourBERT is outperforming BERT in all tourism-specific tasks.
Although Transformers have gained success in several speech processing tasks like spoken language understanding (SLU) and speech translation (ST), achieving online processing while keeping competitive performance is still essential for real-world interaction. In this paper, we take the first step on streaming SLU and simultaneous ST using a blockwise streaming Transformer, which is based on contextual block processing and blockwise synchronous beam search. Furthermore, we design an automatic speech recognition (ASR)-based intermediate loss regularization for the streaming SLU task to improve the classification performance further. As for the simultaneous ST task, we propose a cross-lingual encoding method, which employs a CTC branch optimized with target language translations. In addition, the CTC translation output is also used to refine the search space with CTC prefix score, achieving joint CTC/attention simultaneous translation for the first time. Experiments for SLU are conducted on FSC and SLURP corpora, while the ST task is evaluated on Fisher-CallHome Spanish and MuST-C En-De corpora. Experimental results show that the blockwise streaming Transformer achieves competitive results compared to offline models, especially with our proposed methods that further yield a 2.4% accuracy gain on the SLU task and a 4.3 BLEU gain on the ST task over streaming baselines.
Pretrained language models can be effectively stimulated by textual prompts or demonstrations, especially in low-data scenarios. Recent works have focused on automatically searching discrete or continuous prompts or optimized verbalizers, yet studies for the demonstration are still limited. Concretely, the demonstration examples are crucial for an excellent final performance of prompt-tuning. In this paper, we propose a novel pluggable, extensible, and efficient approach named contrastive demonstration tuning, which is free of demonstration sampling. Furthermore, the proposed approach can be: (i) Plugged to any previous prompt-tuning approaches; (ii) Extended to widespread classification tasks with a large number of categories. Experimental results on 16 datasets illustrate that our method integrated with previous approaches LM-BFF and P-tuning can yield better performance. Code is available in //github.com/zjunlp/PromptKG/tree/main/research/Demo-Tuning.
English pretrained language models, which make up the backbone of many modern NLP systems, require huge amounts of unlabeled training data. These models are generally presented as being trained only on English text but have been found to transfer surprisingly well to other languages. We investigate this phenomenon and find that common English pretraining corpora actually contain significant amounts of non-English text: even when less than 1% of data is not English (well within the error rate of strong language classifiers), this leads to hundreds of millions of foreign language tokens in large-scale datasets. We then demonstrate that even these small percentages of non-English data facilitate cross-lingual transfer for models trained on them, with target language performance strongly correlated to the amount of in-language data seen during pretraining. In light of these findings, we argue that no model is truly monolingual when pretrained at scale, which should be considered when evaluating cross-lingual transfer.
Recent advancements in location-aware analytics have created novel opportunities in different domains. In the area of process mining, enriching process models with geolocation helps to gain a better understanding of how the process activities are executed in practice. In this paper, we introduce our idea of geo-enabled process modeling and report on our industrial experience. To this end, we present a real-world case study to describe the importance of considering the location in process mining. Then we discuss the shortcomings of currently available process mining tools and propose our novel approach for modeling geo-enabled processes focusing on 1) increasing process interpretability through geo-visualization, 2) incorporating location-related metadata into process analysis, and 3) using location-based measures for the assessment of process performance. Finally, we conclude the paper by future research directions.
We present an efficient method of pretraining large-scale autoencoding language models using training signals generated by an auxiliary model. Originated in ELECTRA, this training strategy has demonstrated sample-efficiency to pretrain models at the scale of hundreds of millions of parameters. In this work, we conduct a comprehensive empirical study, and propose a recipe, namely "Model generated dEnoising TRaining Objective" (METRO), which incorporates some of the best modeling techniques developed recently to speed up, stabilize, and enhance pretrained language models without compromising model effectiveness. The resultant models, METRO-LM, consisting of up to 5.4 billion parameters, achieve new state-of-the-art on the GLUE, SuperGLUE, and SQuAD benchmarks. More importantly, METRO-LM are efficient in that they often outperform previous large models with significantly smaller model sizes and lower pretraining cost.
Pre-trained models are widely used in the tasks of natural language processing nowadays. However, in the specific field of text simplification, the research on improving pre-trained models is still blank. In this work, we propose a continued pre-training method for text simplification. Specifically, we propose a new masked language modeling (MLM) mechanism, which does not randomly mask words but only masks simple words. The new mechanism can make the model learn to generate simple words. We use a small-scale simple text dataset for continued pre-training and employ two methods to identify simple words from the texts. We choose BERT, a representative pre-trained model, and continue pre-training it using our proposed method. Finally, we obtain SimpleBERT, which surpasses BERT in both lexical simplification and sentence simplification tasks and has achieved state-of-the-art results on multiple datasets. What's more, SimpleBERT can replace BERT in existing simplification models without modification.
Pretrained models have produced great success in both Computer Vision (CV) and Natural Language Processing (NLP). This progress leads to learning joint representations of vision and language pretraining by feeding visual and linguistic contents into a multi-layer transformer, Visual-Language Pretrained Models (VLPMs). In this paper, we present an overview of the major advances achieved in VLPMs for producing joint representations of vision and language. As the preliminaries, we briefly describe the general task definition and genetic architecture of VLPMs. We first discuss the language and vision data encoding methods and then present the mainstream VLPM structure as the core content. We further summarise several essential pretraining and fine-tuning strategies. Finally, we highlight three future directions for both CV and NLP researchers to provide insightful guidance.
Transformer-based pretrained language models (T-PTLMs) have achieved great success in almost every NLP task. The evolution of these models started with GPT and BERT. These models are built on the top of transformers, self-supervised learning and transfer learning. Transformed-based PTLMs learn universal language representations from large volumes of text data using self-supervised learning and transfer this knowledge to downstream tasks. These models provide good background knowledge to downstream tasks which avoids training of downstream models from scratch. In this comprehensive survey paper, we initially give a brief overview of self-supervised learning. Next, we explain various core concepts like pretraining, pretraining methods, pretraining tasks, embeddings and downstream adaptation methods. Next, we present a new taxonomy of T-PTLMs and then give brief overview of various benchmarks including both intrinsic and extrinsic. We present a summary of various useful libraries to work with T-PTLMs. Finally, we highlight some of the future research directions which will further improve these models. We strongly believe that this comprehensive survey paper will serve as a good reference to learn the core concepts as well as to stay updated with the recent happenings in T-PTLMs.
We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT representations can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE benchmark to 80.4% (7.6% absolute improvement), MultiNLI accuracy to 86.7 (5.6% absolute improvement) and the SQuAD v1.1 question answering Test F1 to 93.2 (1.5% absolute improvement), outperforming human performance by 2.0%.
We introduce the first system towards the novel task of answering complex multisentence recommendation questions in the tourism domain. Our solution uses a pipeline of two modules: question understanding and answering. For question understanding, we define an SQL-like query language that captures the semantic intent of a question; it supports operators like subset, negation, preference and similarity, which are often found in recommendation questions. We train and compare traditional CRFs as well as bidirectional LSTM-based models for converting a question to its semantic representation. We extend these models to a semisupervised setting with partially labeled sequences gathered through crowdsourcing. We find that our best model performs semi-supervised training of BiDiLSTM+CRF with hand-designed features and CCM(Chang et al., 2007) constraints. Finally, in an end to end QA system, our answering component converts our question representation into queries fired on underlying knowledge sources. Our experiments on two different answer corpora demonstrate that our system can significantly outperform baselines with up to 20 pt higher accuracy and 17 pt higher recall.