Using derandomization, we provide an upper bound on the compression size of solutions to the graph coloring problem. In general, if solutions to a combinatorial problem exist with high probability and the probability is simple, then there exists a simple solution to the problem. Otherwise the problem instance has high mutual information with the halting problem.
Given samples from two joint distributions, we consider the problem of Optimal Transportation (OT) between them when conditioned on a common variable. We focus on the general setting where the conditioned variable may be continuous, and the marginals of this variable in the two joint distributions may not be the same. In such settings, standard OT variants cannot be employed, and novel estimation techniques are necessary. Since the main challenge is that the conditional distributions are not explicitly available, the key idea in our OT formulation is to employ kernelized-least-squares terms computed over the joint samples, which implicitly match the transport plan's marginals with the empirical conditionals. Under mild conditions, we prove that our estimated transport plans, as a function of the conditioned variable, are asymptotically optimal. For finite samples, we show that the deviation in terms of our regularized objective is bounded by $O(1/m^{1/4})$, where $m$ is the number of samples. We also discuss how the conditional transport plan could be modelled using explicit probabilistic models as well as using implicit generative ones. We empirically verify the consistency of our estimator on synthetic datasets, where the optimal plan is analytically known. When employed in applications like prompt learning for few-shot classification and conditional-generation in the context of predicting cell responses to treatment, our methodology improves upon state-of-the-art methods.
For the Poisson equation posed in a domain containing a large number of polygonal perforations, we propose a low-dimensional coarse approximation space based on a coarse polygonal partitioning of the domain. Similarly to other multiscale numerical methods, this coarse space is spanned by locally discrete harmonic basis functions. Along the subdomain boundaries, the basis functions are piecewise polynomial. The main contribution of this article is an error estimate regarding the H1-projection over the coarse space which depends only on the regularity of the solution over the edges of the coarse partitioning. For a specific edge refinement procedure, the error analysis establishes superconvergence of the method even if the true solution has a low general regularity. Combined with domain decomposition (DD) methods, the coarse space leads to an efficient two-level iterative linear solver which reaches the fine-scale finite element error in few iterations. It also bodes well as a preconditioner for Krylov methods and provides scalability with respect to the number of subdomains. Numerical experiments showcase the increased precision of the coarse approximation as well as the efficiency and scalability of the coarse space as a component of a DD algorithm.
It was proved by Maksimova in 1977 that exactly eight varieties of Heyting algebras have the amalgamation property, and hence exactly eight axiomatic extensions of intuitionistic propositional logic have the deductive interpolation property. The prevalence of the deductive interpolation property for axiomatic extensions of substructural logics and the amalgamation property for varieties of pointed residuated lattices, their equivalent algebraic semantics, is far less well understood, however. Taking as our starting point a formulation of intuitionistic propositional logic as the full Lambek calculus with exchange, weakening, and contraction, we investigate the role of the exchange rule--algebraically, the commutativity law--in determining the scope of these properties. First, we show that there are continuum-many varieties of idempotent semilinear residuated lattices that have the amalgamation property and contain non-commutative members, and hence continuum-many axiomatic extensions of the corresponding logic that have the deductive interpolation property in which exchange is not derivable. We then show that, in contrast, exactly sixty varieties of commutative idempotent semilinear residuated lattices have the amalgamation property, and hence exactly sixty axiomatic extensions of the corresponding logic with exchange have the deductive interpolation property. From this latter result, it follows also that there are exactly sixty varieties of commutative idempotent semilinear residuated lattices whose first-order theories have a model completion.
Motivated by the discrete dipole approximation (DDA) for the scattering of electromagnetic waves by a dielectric obstacle that can be considered as a simple discretization of a Lippmann-Schwinger style volume integral equation for time-harmonic Maxwell equations, we analyze an analogous discretization of convolution operators with strongly singular kernels. For a class of kernel functions that includes the finite Hilbert transformation in 1D and the principal part of the Maxwell volume integral operator used for DDA in dimensions 2 and 3, we show that the method, which does not fit into known frameworks of projection methods, can nevertheless be considered as a finite section method for an infinite block Toeplitz matrix. The symbol of this matrix is given by a Fourier series that does not converge absolutely. We use Ewald's method to obtain an exponentially fast convergent series representation of this symbol and show that it is a bounded function, thereby allowing to describe the spectrum and the numerical range of the matrix. It turns out that this numerical range includes the numerical range of the integral operator, but that it is in some cases strictly larger. In these cases the discretization method does not provide a spectrally correct approximation, and while it is stable for a large range of the spectral parameter $\lambda$, there are values of $\lambda$ for which the singular integral equation is well posed, but the discretization method is unstable.
Determining the largest size, or equivalently finding the lowest redundancy, of q-ary codes for given length and minimum distance is one of the central and fundamental problems in coding theory. Inspired by the construction of Varshamov-Tenengolts (VT for short) codes via check-sums, we provide an explicit construction of nonlinear codes with lower redundancy than linear codes under the same length and minimum distance. Similar to the VT codes, our construction works well for small distance (or even constant distance). Furthermore, we design quasi-linear time decoding algorithms for both erasure and adversary errors.
Although pretraining has garnered significant attention and popularity in recent years, its application in graph-based recommender systems is relatively limited. It is challenging to exploit prior knowledge by pretraining in widely used ID-dependent datasets. On one hand, user-item interaction history in one dataset can hardly be transferred to other datasets through pretraining, where IDs are different. On the other hand, pretraining and finetuning on the same dataset leads to a high risk of overfitting. In this paper, we propose a novel multitask pretraining framework named Unified Pretraining for Recommendation via Task Hypergraphs. For a unified learning pattern to handle diverse requirements and nuances of various pretext tasks, we design task hypergraphs to generalize pretext tasks to hyperedge prediction. A novel transitional attention layer is devised to discriminatively learn the relevance between each pretext task and recommendation. Experimental results on three benchmark datasets verify the superiority of UPRTH. Additional detailed investigations are conducted to demonstrate the effectiveness of the proposed framework.
As a scene graph compactly summarizes the high-level content of an image in a structured and symbolic manner, the similarity between scene graphs of two images reflects the relevance of their contents. Based on this idea, we propose a novel approach for image-to-image retrieval using scene graph similarity measured by graph neural networks. In our approach, graph neural networks are trained to predict the proxy image relevance measure, computed from human-annotated captions using a pre-trained sentence similarity model. We collect and publish the dataset for image relevance measured by human annotators to evaluate retrieval algorithms. The collected dataset shows that our method agrees well with the human perception of image similarity than other competitive baselines.
Image segmentation is an important component of many image understanding systems. It aims to group pixels in a spatially and perceptually coherent manner. Typically, these algorithms have a collection of parameters that control the degree of over-segmentation produced. It still remains a challenge to properly select such parameters for human-like perceptual grouping. In this work, we exploit the diversity of segments produced by different choices of parameters. We scan the segmentation parameter space and generate a collection of image segmentation hypotheses (from highly over-segmented to under-segmented). These are fed into a cost minimization framework that produces the final segmentation by selecting segments that: (1) better describe the natural contours of the image, and (2) are more stable and persistent among all the segmentation hypotheses. We compare our algorithm's performance with state-of-the-art algorithms, showing that we can achieve improved results. We also show that our framework is robust to the choice of segmentation kernel that produces the initial set of hypotheses.
While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on the ImageNet classification task has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new Full Reference Image Quality Assessment (FR-IQA) dataset of perceptual human judgments, orders of magnitude larger than previous datasets. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by huge margins. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.
Inspired by recent development of artificial satellite, remote sensing images have attracted extensive attention. Recently, noticeable progress has been made in scene classification and target detection.However, it is still not clear how to describe the remote sensing image content with accurate and concise sentences. In this paper, we investigate to describe the remote sensing images with accurate and flexible sentences. First, some annotated instructions are presented to better describe the remote sensing images considering the special characteristics of remote sensing images. Second, in order to exhaustively exploit the contents of remote sensing images, a large-scale aerial image data set is constructed for remote sensing image caption. Finally, a comprehensive review is presented on the proposed data set to fully advance the task of remote sensing caption. Extensive experiments on the proposed data set demonstrate that the content of the remote sensing image can be completely described by generating language descriptions. The data set is available at //github.com/2051/RSICD_optimal