The widespread adoption of edge computing has emerged as a prominent trend for alleviating task processing delays and reducing energy consumption. However, the dynamic nature of network conditions and the varying computation capacities of edge servers (ESs) can introduce disparities between computation loads and available computing resources in edge computing networks, potentially leading to inadequate service quality. To address this challenge, this paper investigates a practical scenario characterized by dynamic task offloading. Initially, we examine traditional Multi-armed Bandit (MAB) algorithms, namely the $\varepsilon$-greedy algorithm and the UCB1-based algorithm. However, both algorithms exhibit certain weaknesses in effectively addressing the tidal data traffic patterns. Consequently, based on MAB, we propose an adaptive task offloading algorithm (ATOA) that overcomes these limitations. By conducting extensive simulations, we demonstrate the superiority of our ATOA solution in reducing task processing latency compared to conventional MAB methods. This substantiates the effectiveness of our approach in enhancing the performance of edge computing networks and improving overall service quality.
Vision transformers have achieved leading performance on various visual tasks yet still suffer from high computational complexity. The situation deteriorates in dense prediction tasks like semantic segmentation, as high-resolution inputs and outputs usually imply more tokens involved in computations. Directly removing the less attentive tokens has been discussed for the image classification task but can not be extended to semantic segmentation since a dense prediction is required for every patch. To this end, this work introduces a Dynamic Token Pruning (DToP) method based on the early exit of tokens for semantic segmentation. Motivated by the coarse-to-fine segmentation process by humans, we naturally split the widely adopted auxiliary-loss-based network architecture into several stages, where each auxiliary block grades every token's difficulty level. We can finalize the prediction of easy tokens in advance without completing the entire forward pass. Moreover, we keep $k$ highest confidence tokens for each semantic category to uphold the representative context information. Thus, computational complexity will change with the difficulty of the input, akin to the way humans do segmentation. Experiments suggest that the proposed DToP architecture reduces on average $20\% - 35\%$ of computational cost for current semantic segmentation methods based on plain vision transformers without accuracy degradation.
Trust-aware human-robot interaction (HRI) has received increasing research attention, as trust has been shown to be a crucial factor for effective HRI. Research in trust-aware HRI discovered a dilemma -- maximizing task rewards often leads to decreased human trust, while maximizing human trust would compromise task performance. In this work, we address this dilemma by formulating the HRI process as a two-player Markov game and utilizing the reward-shaping technique to improve human trust while limiting performance loss. Specifically, we show that when the shaping reward is potential-based, the performance loss can be bounded by the potential functions evaluated at the final states of the Markov game. We apply the proposed framework to the experience-based trust model, resulting in a linear program that can be efficiently solved and deployed in real-world applications. We evaluate the proposed framework in a simulation scenario where a human-robot team performs a search-and-rescue mission. The results demonstrate that the proposed framework successfully modifies the robot's optimal policy, enabling it to increase human trust at a minimal task performance cost.
We propose novel methods for change-point testing for nonparametric estimators of expected shortfall and related risk measures in weakly dependent time series. We can detect general multiple structural changes in the tails of marginal distributions of time series under general assumptions. Self-normalization allows us to avoid the issues of standard error estimation. The theoretical foundations for our methods are functional central limit theorems, which we develop under weak assumptions. An empirical study of S&P 500 and US Treasury bond returns illustrates the practical use of our methods in detecting and quantifying market instability via the tails of financial time series.
Application for semantic segmentation models in areas such as autonomous vehicles and human computer interaction require real-time predictive capabilities. The challenges of addressing real-time application is amplified by the need to operate on resource constrained hardware. Whilst development of real-time methods for these platforms has increased, these models are unable to sufficiently reason about uncertainty present when applied on embedded real-time systems. This paper addresses this by combining deep feature extraction from pre-trained models with Bayesian regression and moment propagation for uncertainty aware predictions. We demonstrate how the proposed method can yield meaningful epistemic uncertainty on embedded hardware in real-time whilst maintaining predictive performance.
Operational constraint violations may occur when deep reinforcement learning (DRL) agents interact with real-world active distribution systems to learn their optimal policies during training. This letter presents a universal distributionally robust safety filter (DRSF) using which any DRL agent can reduce the constraint violations of distribution systems significantly during training while maintaining near-optimal solutions. The DRSF is formulated as a distributionally robust optimization problem with chance constraints of operational limits. This problem aims to compute near-optimal actions that are minimally modified from the optimal actions of DRL-based Volt/VAr control by leveraging the distribution system model, thereby providing constraint satisfaction guarantee with a probability level under the model uncertainty. The performance of the proposed DRSF is verified using the IEEE 33-bus and 123-bus systems.
Although a recent shift has been made in the field of predictive process monitoring to use models from the explainable artificial intelligence field, the evaluation still occurs mainly through performance-based metrics, thus not accounting for the actionability and implications of the explanations. In this paper, we define explainability through the interpretability of the explanations and the faithfulness of the explainability model in the field of process outcome prediction. The introduced properties are analysed along the event, case, and control flow perspective which are typical for a process-based analysis. This allows comparing inherently created explanations with post-hoc explanations. We benchmark seven classifiers on thirteen real-life events logs, and these cover a range of transparent and non-transparent machine learning and deep learning models, further complemented with explainability techniques. Next, this paper contributes a set of guidelines named X-MOP which allows selecting the appropriate model based on the event log specifications, by providing insight into how the varying preprocessing, model complexity and explainability techniques typical in process outcome prediction influence the explainability of the model.
Existing research efforts for multi-interest candidate matching in recommender systems mainly focus on improving model architecture or incorporating additional information, neglecting the importance of training schemes. This work revisits the training framework and uncovers two major problems hindering the expressiveness of learned multi-interest representations. First, the current training objective (i.e., uniformly sampled softmax) fails to effectively train discriminative representations in a multi-interest learning scenario due to the severe increase in easy negative samples. Second, a routing collapse problem is observed where each learned interest may collapse to express information only from a single item, resulting in information loss. To address these issues, we propose the REMI framework, consisting of an Interest-aware Hard Negative mining strategy (IHN) and a Routing Regularization (RR) method. IHN emphasizes interest-aware hard negatives by proposing an ideal sampling distribution and developing a Monte-Carlo strategy for efficient approximation. RR prevents routing collapse by introducing a novel regularization term on the item-to-interest routing matrices. These two components enhance the learned multi-interest representations from both the optimization objective and the composition information. REMI is a general framework that can be readily applied to various existing multi-interest candidate matching methods. Experiments on three real-world datasets show our method can significantly improve state-of-the-art methods with easy implementation and negligible computational overhead. The source code will be released.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
The low resolution of objects of interest in aerial images makes pedestrian detection and action detection extremely challenging tasks. Furthermore, using deep convolutional neural networks to process large images can be demanding in terms of computational requirements. In order to alleviate these challenges, we propose a two-step, yes and no question answering framework to find specific individuals doing one or multiple specific actions in aerial images. First, a deep object detector, Single Shot Multibox Detector (SSD), is used to generate object proposals from small aerial images. Second, another deep network, is used to learn a latent common sub-space which associates the high resolution aerial imagery and the pedestrian action labels that are provided by the human-based sources
We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.