亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

It has been argued that semantic systems reflect pressure for efficiency, and a current debate concerns the cultural evolutionary process that produces this pattern. We consider efficiency as instantiated in the Information Bottleneck (IB) principle, and a model of cultural evolution that combines iterated learning and communication. We show that this model, instantiated in neural networks, converges to color naming systems that are efficient in the IB sense and similar to human color naming systems. We also show that iterated learning alone, and communication alone, do not yield the same outcome as clearly.

相關內容

Federated Learning (FL) enables multiple clients to collaboratively learn a machine learning model without exchanging their own local data. In this way, the server can exploit the computational power of all clients and train the model on a larger set of data samples among all clients. Although such a mechanism is proven to be effective in various fields, existing works generally assume that each client preserves sufficient data for training. In practice, however, certain clients may only contain a limited number of samples (i.e., few-shot samples). For example, the available photo data taken by a specific user with a new mobile device is relatively rare. In this scenario, existing FL efforts typically encounter a significant performance drop on these clients. Therefore, it is urgent to develop a few-shot model that can generalize to clients with limited data under the FL scenario. In this paper, we refer to this novel problem as federated few-shot learning. Nevertheless, the problem remains challenging due to two major reasons: the global data variance among clients (i.e., the difference in data distributions among clients) and the local data insufficiency in each client (i.e., the lack of adequate local data for training). To overcome these two challenges, we propose a novel federated few-shot learning framework with two separately updated models and dedicated training strategies to reduce the adverse impact of global data variance and local data insufficiency. Extensive experiments on four prevalent datasets that cover news articles and images validate the effectiveness of our framework compared with the state-of-the-art baselines. Our code is provided at //github.com/SongW-SW/F2L.

The Hidden Markov Model (HMM) is one of the most widely used statistical models for sequential data analysis. One of the key reasons for this versatility is the ability of HMM to deal with missing data. However, standard HMM learning algorithms rely crucially on the assumption that the positions of the missing observations \emph{within the observation sequence} are known. In the natural sciences, where this assumption is often violated, special variants of HMM, commonly known as Silent-state HMMs (SHMMs), are used. Despite their widespread use, these algorithms strongly rely on specific structural assumptions of the underlying chain, such as acyclicity, thus limiting the applicability of these methods. Moreover, even in the acyclic case, it has been shown that these methods can lead to poor reconstruction. In this paper we consider the general problem of learning an HMM from data with unknown missing observation locations. We provide reconstruction algorithms that do not require any assumptions about the structure of the underlying chain, and can also be used with limited prior knowledge, unlike SHMM. We evaluate and compare the algorithms in a variety of scenarios, measuring their reconstruction precision, and robustness under model miss-specification. Notably, we show that under proper specifications one can reconstruct the process dynamics as well as if the missing observations positions were known.

Coding schemes for several problems in network information theory are constructed starting from point-to-point channel codes that are designed for symmetric channels. Given that the point-to-point codes satisfy certain properties pertaining to the rate, the error probability, and the distribution of decoded sequences, bounds on the performance of the coding schemes are derived and shown to hold irrespective of other properties of the codes. In particular, we consider the problems of lossless and lossy source coding, Slepian--Wolf coding, Wyner--Ziv coding, Berger--Tung coding, multiple description coding, asymmetric channel coding, Gelfand--Pinsker coding, coding for multiple access channels, Marton coding for broadcast channels, and coding for cloud radio access networks (C-RAN's). We show that the coding schemes can achieve the best known inner bounds for these problems, provided that the constituent point-to-point channel codes are rate-optimal. This would allow one to leverage commercial off-the-shelf codes for point-to-point symmetric channels in the practical implementation of codes over networks. Simulation results demonstrate the gain of the proposed coding schemes compared to existing practical solutions to these problems.

This paper studies an intelligent reflecting surface (IRS)-aided multi-antenna simultaneous wireless information and power transfer (SWIPT) system where an $M$-antenna access point (AP) serves $K$ single-antenna information users (IUs) and $J$ single-antenna energy users (EUs) with the aid of an IRS with phase errors. We explicitly concentrate on overloaded scenarios where $K + J > M$ and $K \geq M$. Our goal is to maximize the minimum throughput among all the IUs by optimizing the allocation of resources (including time, transmit beamforming at the AP, and reflect beamforming at the IRS), while guaranteeing the minimum amount of harvested energy at each EU. Towards this goal, we propose two user grouping (UG) schemes, namely, the non-overlapping UG scheme and the overlapping UG scheme, where the difference lies in whether identical IUs can exist in multiple groups. Different IU groups are served in orthogonal time dimensions, while the IUs in the same group are served simultaneously with all the EUs via spatial multiplexing. The two problems corresponding to the two UG schemes are mixed-integer non-convex optimization problems and difficult to solve optimally. We propose efficient algorithms for these two problems based on the big-M formulation, the penalty method, the block coordinate descent, and the successive convex approximation. Simulation results show that: 1) the non-robust counterparts of the proposed robust designs are unsuitable for practical IRS-aided SWIPT systems with phase errors since the energy harvesting constraints cannot be satisfied; 2) the proposed UG strategies can significantly improve the max-min throughput over the benchmark schemes without UG or adopting random UG; 3) the overlapping UG scheme performs much better than its non-overlapping counterpart when the absolute difference between $K$ and $M$ is small and the EH constraints are not stringent.

Dictionary learning is an effective tool for pattern recognition and classification of time series data. Among various dictionary learning techniques, the dynamic time warping (DTW) is commonly used for dealing with temporal delays, scaling, transformation, and many other kinds of temporal misalignments issues. However, the DTW suffers overfitting or information loss due to its discrete nature in aligning time series data. To address this issue, we propose a generalized time warping invariant dictionary learning algorithm in this paper. Our approach features a generalized time warping operator, which consists of linear combinations of continuous basis functions for facilitating continuous temporal warping. The integration of the proposed operator and the dictionary learning is formulated as an optimization problem, where the block coordinate descent method is employed to jointly optimize warping paths, dictionaries, and sparseness coefficients. The optimized results are then used as hyperspace distance measures to feed classification and clustering algorithms. The superiority of the proposed method in terms of dictionary learning, classification, and clustering is validated through ten sets of public datasets in comparing with various benchmark methods.

Driven by the vision of "intelligent connection of everything" toward 6G, the collective intelligence of networked machines can be fully exploited to improve system efficiency by shifting the paradigm of wireless communication design from naive maximalist approaches to intelligent value-based approaches. In this article, we propose an on-purpose machine communication framework enabled by joint communication, sensing, and computation (JCSC) technology, which employs machine semantics as the interactive information flow. Naturally, there are potential technical barriers to be solved before the widespread adoption of on-purpose communications, including the conception of machine purpose, fast and concise networking strategy, and semantics-aware information exchange mechanism during the process of task-oriented cooperation. Hence, we discuss enabling technologies complemented by a range of open challenges. The simulation result shows that the proposed framework can significantly reduce networking overhead and improve communication efficiency.

The line coverage problem is to find efficient routes for coverage of linear features by one or more resource-constrained robots. Linear features model environments such as road networks, power lines, and oil and gas pipelines. We define two modes of travel for robots: servicing and deadheading. A robot services a feature if it performs task-specific actions, e.g., taking images, as it traverses the feature; otherwise, it is deadheading. Traversing the environment incurs costs (e.g., travel time) and demands on resources (e.g., battery life). Servicing and deadheading can have different cost and demand functions, and we further permit them to be direction dependent. We model the environment as a graph and provide an integer linear program. As the problem is NP-hard, we develop a fast and efficient heuristic algorithm, Merge-Embed-Merge (MEM). By exploiting the constructive property of the MEM algorithm, we develop algorithms for line coverage of large graphs with multiple depots. Furthermore, we efficiently incorporate turning costs and nonholonomic constraints into the algorithm. We benchmark the algorithms on road networks and demonstrate them in experiments using aerial robots.

Despite the advancement of machine learning techniques in recent years, state-of-the-art systems lack robustness to "real world" events, where the input distributions and tasks encountered by the deployed systems will not be limited to the original training context, and systems will instead need to adapt to novel distributions and tasks while deployed. This critical gap may be addressed through the development of "Lifelong Learning" systems that are capable of 1) Continuous Learning, 2) Transfer and Adaptation, and 3) Scalability. Unfortunately, efforts to improve these capabilities are typically treated as distinct areas of research that are assessed independently, without regard to the impact of each separate capability on other aspects of the system. We instead propose a holistic approach, using a suite of metrics and an evaluation framework to assess Lifelong Learning in a principled way that is agnostic to specific domains or system techniques. Through five case studies, we show that this suite of metrics can inform the development of varied and complex Lifelong Learning systems. We highlight how the proposed suite of metrics quantifies performance trade-offs present during Lifelong Learning system development - both the widely discussed Stability-Plasticity dilemma and the newly proposed relationship between Sample Efficient and Robust Learning. Further, we make recommendations for the formulation and use of metrics to guide the continuing development of Lifelong Learning systems and assess their progress in the future.

Deep neural networks (DNNs) have become a proven and indispensable machine learning tool. As a black-box model, it remains difficult to diagnose what aspects of the model's input drive the decisions of a DNN. In countless real-world domains, from legislation and law enforcement to healthcare, such diagnosis is essential to ensure that DNN decisions are driven by aspects appropriate in the context of its use. The development of methods and studies enabling the explanation of a DNN's decisions has thus blossomed into an active, broad area of research. A practitioner wanting to study explainable deep learning may be intimidated by the plethora of orthogonal directions the field has taken. This complexity is further exacerbated by competing definitions of what it means ``to explain'' the actions of a DNN and to evaluate an approach's ``ability to explain''. This article offers a field guide to explore the space of explainable deep learning aimed at those uninitiated in the field. The field guide: i) Introduces three simple dimensions defining the space of foundational methods that contribute to explainable deep learning, ii) discusses the evaluations for model explanations, iii) places explainability in the context of other related deep learning research areas, and iv) finally elaborates on user-oriented explanation designing and potential future directions on explainable deep learning. We hope the guide is used as an easy-to-digest starting point for those just embarking on research in this field.

Time Series Classification (TSC) is an important and challenging problem in data mining. With the increase of time series data availability, hundreds of TSC algorithms have been proposed. Among these methods, only a few have considered Deep Neural Networks (DNNs) to perform this task. This is surprising as deep learning has seen very successful applications in the last years. DNNs have indeed revolutionized the field of computer vision especially with the advent of novel deeper architectures such as Residual and Convolutional Neural Networks. Apart from images, sequential data such as text and audio can also be processed with DNNs to reach state-of-the-art performance for document classification and speech recognition. In this article, we study the current state-of-the-art performance of deep learning algorithms for TSC by presenting an empirical study of the most recent DNN architectures for TSC. We give an overview of the most successful deep learning applications in various time series domains under a unified taxonomy of DNNs for TSC. We also provide an open source deep learning framework to the TSC community where we implemented each of the compared approaches and evaluated them on a univariate TSC benchmark (the UCR/UEA archive) and 12 multivariate time series datasets. By training 8,730 deep learning models on 97 time series datasets, we propose the most exhaustive study of DNNs for TSC to date.

北京阿比特科技有限公司