亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study unique continuation over an interface using a stabilized unfitted finite element method tailored to the conditional stability of the problem. The interface is approximated using an isoparametric transformation of the background mesh and the corresponding geometrical error is included in our error analysis.To counter possible destabilizing effects caused by non-conformity of the discretization and cope with the interface conditions, we introduce adapted regularization terms. This allows to derive error estimates based on conditional stability. Numerical experiments suggest that the presence of an interface seems to be of minor importance for the continuation of the solution beyond the data domain. On the other hand, certain convexity properties of the geometry are crucial as has already been observed for many other problems without interfaces.

相關內容

讓 iOS 8 和 OS X Yosemite 無縫切換的一個新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source:

The proximal Galerkin finite element method is a high-order, low iteration complexity, nonlinear numerical method that preserves the geometric and algebraic structure of bound constraints in infinite-dimensional function spaces. This paper introduces the proximal Galerkin method and applies it to solve free boundary problems, enforce discrete maximum principles, and develop scalable, mesh-independent algorithms for optimal design. The paper leads to a derivation of the latent variable proximal point (LVPP) algorithm: an unconditionally stable alternative to the interior point method. LVPP is an infinite-dimensional optimization algorithm that may be viewed as having an adaptive barrier function that is updated with a new informative prior at each (outer loop) optimization iteration. One of the main benefits of this algorithm is witnessed when analyzing the classical obstacle problem. Therein, we find that the original variational inequality can be replaced by a sequence of semilinear partial differential equations (PDEs) that are readily discretized and solved with, e.g., high-order finite elements. Throughout this work, we arrive at several unexpected contributions that may be of independent interest. These include (1) a semilinear PDE we refer to as the entropic Poisson equation; (2) an algebraic/geometric connection between high-order positivity-preserving discretizations and certain infinite-dimensional Lie groups; and (3) a gradient-based, bound-preserving algorithm for two-field density-based topology optimization. The complete latent variable proximal Galerkin methodology combines ideas from nonlinear programming, functional analysis, tropical algebra, and differential geometry and can potentially lead to new synergies among these areas as well as within variational and numerical analysis.

In this paper, we propose a human trajectory prediction model that combines a Long Short-Term Memory (LSTM) network with an attention mechanism. To do that, we use attention scores to determine which parts of the input data the model should focus on when making predictions. Attention scores are calculated for each input feature, with a higher score indicating the greater significance of that feature in predicting the output. Initially, these scores are determined for the target human position, velocity, and their neighboring individual's positions and velocities. By using attention scores, our model can prioritize the most relevant information in the input data and make more accurate predictions. We extract attention scores from our attention mechanism and integrate them into the trajectory prediction module to predict human future trajectories. To achieve this, we introduce a new neural layer that processes attention scores after extracting them and concatenates them with positional information. We evaluate our approach on the publicly available ETH and UCY datasets and measure its performance using the final displacement error (FDE) and average displacement error (ADE) metrics. We show that our modified algorithm performs better than the Social LSTM in predicting the future trajectory of pedestrians in crowded spaces. Specifically, our model achieves an improvement of 6.2% in ADE and 6.3% in FDE compared to the Social LSTM results in the literature.

We introduce new control-volume finite-element discretization schemes suitable for solving the Stokes problem. Within a common framework, we present different approaches for constructing such schemes. The first and most established strategy employs a non-overlapping partitioning into control volumes. The second represents a new idea by splitting into two sets of control volumes, the first set yielding a partition of the domain and the second containing the remaining overlapping control volumes required for stability. The third represents a hybrid approach where finite volumes are combined with finite elements based on a hierarchical splitting of the ansatz space. All approaches are based on typical finite element function spaces but yield locally mass and momentum conservative discretization schemes that can be interpreted as finite volume schemes. We apply all strategies to the inf-sub stable MINI finite-element pair. Various test cases, including convergence tests and the numerical observation of the boundedness of the number of preconditioned Krylov solver iterations, as well as more complex scenarios of flow around obstacles or through a three-dimensional vessel bifurcation, demonstrate the stability and robustness of the schemes.

A standard approach to solve ordinary differential equations, when they describe dynamical systems, is to adopt a Runge-Kutta or related scheme. Such schemes, however, are not applicable to the large class of equations which do not constitute dynamical systems. In several physical systems, we encounter integro-differential equations with memory terms where the time derivative of a state variable at a given time depends on all past states of the system. Secondly, there are equations whose solutions do not have well-defined Taylor series expansion. The Maxey-Riley-Gatignol equation, which describes the dynamics of an inertial particle in nonuniform and unsteady flow, displays both challenges. We use it as a test bed to address the questions we raise, but our method may be applied to all equations of this class. We show that the Maxey-Riley-Gatignol equation can be embedded into an extended Markovian system which is constructed by introducing a new dynamical co-evolving state variable that encodes memory of past states. We develop a Runge-Kutta algorithm for the resultant Markovian system. The form of the kernels involved in deriving the Runge-Kutta scheme necessitates the use of an expansion in powers of $t^{1/2}$. Our approach naturally inherits the benefits of standard time-integrators, namely a constant memory storage cost, a linear growth of operational effort with simulation time, and the ability to restart a simulation with the final state as the new initial condition.

Hawkes processes are often applied to model dependence and interaction phenomena in multivariate event data sets, such as neuronal spike trains, social interactions, and financial transactions. In the nonparametric setting, learning the temporal dependence structure of Hawkes processes is generally a computationally expensive task, all the more with Bayesian estimation methods. In particular, for generalised nonlinear Hawkes processes, Monte-Carlo Markov Chain methods applied to compute the doubly intractable posterior distribution are not scalable to high-dimensional processes in practice. Recently, efficient algorithms targeting a mean-field variational approximation of the posterior distribution have been proposed. In this work, we first unify existing variational Bayes approaches under a general nonparametric inference framework, and analyse the asymptotic properties of these methods under easily verifiable conditions on the prior, the variational class, and the nonlinear model. Secondly, we propose a novel sparsity-inducing procedure, and derive an adaptive mean-field variational algorithm for the popular sigmoid Hawkes processes. Our algorithm is parallelisable and therefore computationally efficient in high-dimensional setting. Through an extensive set of numerical simulations, we also demonstrate that our procedure is able to adapt to the dimensionality of the parameter of the Hawkes process, and is partially robust to some type of model mis-specification.

This paper examines the distribution of order statistics taken from simple-random-sampling without replacement (SRSWOR) from a finite population with values 1,...,N. This distribution is a shifted version of the beta-binomial distribution, parameterised in a particular way. We derive the distribution and show how it relates to the distribution of order statistics under IID sampling from a uniform distribution over the unit interval. We examine properties of the distribution, including moments and asymptotic results. We also generalise the distribution to sampling without replacement of order statistics from an arbitrary finite population. We examine the properties of the order statistics for inference about an unknown population size (called the German tank problem) and we derive relevant estimation results based on observation of an arbitrary set of order statistics. We also introduce an algorithm that simulates sampling without replacement of order statistics from an arbitrary finite population without having to generate the entire sample.

We present a multigrid algorithm to solve efficiently the large saddle-point systems of equations that typically arise in PDE-constrained optimization under uncertainty. The algorithm is based on a collective smoother that at each iteration sweeps over the nodes of the computational mesh, and solves a reduced saddle-point system whose size depends on the number $N$ of samples used to discretized the probability space. We show that this reduced system can be solved with optimal $O(N)$ complexity. We test the multigrid method on three problems: a linear-quadratic problem for which the multigrid method is used to solve directly the linear optimality system; a nonsmooth problem with box constraints and $L^1$-norm penalization on the control, in which the multigrid scheme is used within a semismooth Newton iteration; a risk-adverse problem with the smoothed CVaR risk measure where the multigrid method is called within a preconditioned Newton iteration. In all cases, the multigrid algorithm exhibits very good performances and robustness with respect to all parameters of interest.

Community detection is an important content in complex network analysis. The existing community detection methods in attributed networks mostly focus on only using network structure, while the methods of integrating node attributes is mainly for the traditional community structures, and cannot detect multipartite structures and mixture structures in network. In addition, the model-based community detection methods currently proposed for attributed networks do not fully consider unique topology information of nodes, such as betweenness centrality and clustering coefficient. Therefore, a stochastic block model that integrates betweenness centrality and clustering coefficient of nodes for community detection in attributed networks, named BCSBM, is proposed in this paper. Different from other generative models for attributed networks, the generation process of links and attributes in BCSBM model follows the Poisson distribution, and the probability between community is considered based on the stochastic block model. Moreover, the betweenness centrality and clustering coefficient of nodes are introduced into the process of links and attributes generation. Finally, the expectation maximization algorithm is employed to estimate the parameters of the BCSBM model, and the node-community memberships is obtained through the hard division process, so the community detection is completed. By experimenting on six real-work networks containing different network structures, and comparing with the community detection results of five algorithms, the experimental results show that the BCSBM model not only inherits the advantages of the stochastic block model and can detect various network structures, but also has good data fitting ability due to introducing the betweenness centrality and clustering coefficient of nodes. Overall, the performance of this model is superior to other five compared algorithms.

We investigate a class of parametric elliptic eigenvalue problems with homogeneous essential boundary conditions where the coefficients (and hence the solution $u$) may depend on a parameter $y$. For the efficient approximate evaluation of parameter sensitivities of the first eigenpairs on the entire parameter space we propose and analyse Gevrey class and analytic regularity of the solution with respect to the parameters. This is made possible by a novel proof technique which we introduce and demonstrate in this paper. Our regularity result has immediate implications for convergence of various numerical schemes for parametric elliptic eigenvalue problems, in particular, for elliptic eigenvalue problems with infinitely many parameters arising from elliptic differential operators with random coefficients.

Permutation tests are widely used for statistical hypothesis testing when the sampling distribution of the test statistic under the null hypothesis is analytically intractable or unreliable due to finite sample sizes. One critical challenge in the application of permutation tests in genomic studies is that an enormous number of permutations are often needed to obtain reliable estimates of very small $p$-values, leading to intensive computational effort. To address this issue, we develop algorithms for the accurate and efficient estimation of small $p$-values in permutation tests for paired and independent two-group genomic data, and our approaches leverage a novel framework for parameterizing the permutation sample spaces of those two types of data respectively using the Bernoulli and conditional Bernoulli distributions, combined with the cross-entropy method. The performance of our proposed algorithms is demonstrated through the application to two simulated datasets and two real-world gene expression datasets generated by microarray and RNA-Seq technologies and comparisons to existing methods such as crude permutations and SAMC, and the results show that our approaches can achieve orders of magnitude of computational efficiency gains in estimating small $p$-values. Our approaches offer promising solutions for the improvement of computational efficiencies of existing permutation test procedures and the development of new testing methods using permutations in genomic data analysis.

北京阿比特科技有限公司