This paper develops a new genetic algorithm based resource allocation (GA-RA) technique for energy-efficient throughout maximization in multi-user massive multiple-input multiple-output (MU-mMIMO) systems using orthogonal frequency division multiplexing (OFDM) based transmission. We employ a hybrid precoding (HP) architecture with three stages: (i) radio frequency (RF) beamformer, (ii) baseband (BB) precoder, (iii) resource allocation (RA) block. First, a single RF beamformer block is built for all subcarriers via the slow time-varying angle-of-departure (AoD) information. For enhancing the energy efficiency, the RF beamformer aims to reduce the hardware cost/complexity and total power consumption via a low number of RF chains. Afterwards, the reduced-size effective channel state information (CSI) is utilized in the design of a distinct BB precoder and RA block for each subcarrier. The BB precoder is developed via regularized zero-forcing technique. Finally, the RA block is built via the proposed GA-RA technique for throughput maximization by allocating the power and subcarrier resources. The illustrative results show that the throughput performance in the MU-mMIMO-OFDM systems is greatly enhanced via the proposed GA-RA technique compared to both equal RA (EQ-RA) and particle swarm optimization based RA (PSO-RA). Moreover, the performance gain ratio increases with the increasing number of subcarriers, particularly for low transmission powers.
This paper investigates a new downlink nonorthogonal multiple access (NOMA) system, where a multiantenna unmanned aerial vehicle (UAV) is powered by wireless power transfer (WPT) and serves as the base station for multiple pairs of ground users (GUs) running NOMA in each pair. An energy efficiency (EE) maximization problem is formulated to jointly optimize the WPT time and the placement for the UAV, and the allocation of the UAV's transmit power between different NOMA user pairs and within each pair. To efficiently solve this nonconvex problem, we decompose the problem into three subproblems using block coordinate descent. For the subproblem of intra-pair power allocation within each NOMA user pair, we construct a supermodular game with confirmed convergence to a Nash equilibrium. Given the intra-pair power allocation, successive convex approximation is applied to convexify and solve the subproblem of WPT time allocation and inter-pair power allocation between the user pairs. Finally, we solve the subproblem of UAV placement by using the Lagrange multiplier method. Simulations show that our approach can substantially outperform its alternatives that do not use NOMA and WPT techniques or that do not optimize the UAV location.
In this work, we consider the problem of finding a set of tours to a traveling salesperson problem (TSP) instance maximizing diversity, while satisfying a given cost constraint. This study aims to investigate the effectiveness of applying niching to maximize diversity rather than simply maintaining it. To this end, we introduce a 2-stage approach where a simple niching memetic algorithm (NMA), derived from a state-of-the-art for multi-solution TSP, is combined with a baseline diversifying algorithm. The most notable feature of the proposed NMA is the use of randomized improvement-first local search instead of 2-opt. Our experiment on TSPLIB instances shows that while the populations evolved by our NMA tend to contain clusters at tight quality constraints, they frequently occupy distant basins of attraction rather than close-by regions, improving on the baseline diversification in terms of sum-sum diversity. Compared to the original NMA, ours, despite its simplicity, finds more distant solutions of higher quality within less running time, by a large margin.
The security of quantum key distribution (QKD) is severely threatened by discrepancies between realistic devices and theoretical assumptions. Recently, a significant framework called the reference technique was proposed to provide security against arbitrary source flaws, including pulse correlations. Here, we propose an efficient four-phase twin-field QKD using laser pulses adopting the reference technique for security against all possible source imperfections. We present a characterization of source flaws and connect them to experimental data, together with a finite-key analysis. In addition, we demonstrate the feasibility of our protocol through a proof-of-principle experimental implementation and demonstrate a secure key rate of 1.63 kbps with a 20 dB channel loss. Compared with previous QKD protocols with imperfect devices, our work considerably improves both the secure key rate and the transmission distance, and shows application potential in the practical deployment of secure QKD with device imperfections.
Introducing sparsity in a neural network has been an efficient way to reduce its complexity while keeping its performance almost intact. Most of the time, sparsity is introduced using a three-stage pipeline: 1) train the model to convergence, 2) prune the model according to some criterion, 3) fine-tune the pruned model to recover performance. The last two steps are often performed iteratively, leading to reasonable results but also to a time-consuming and complex process. In our work, we propose to get rid of the first step of the pipeline and to combine the two other steps in a single pruning-training cycle, allowing the model to jointly learn for the optimal weights while being pruned. We do this by introducing a novel pruning schedule, named One-Cycle Pruning, which starts pruning from the beginning of the training, and until its very end. Adopting such a schedule not only leads to better performing pruned models but also drastically reduces the training budget required to prune a model. Experiments are conducted on a variety of architectures (VGG-16 and ResNet-18) and datasets (CIFAR-10, CIFAR-100 and Caltech-101), and for relatively high sparsity values (80%, 90%, 95% of weights removed). Our results show that One-Cycle Pruning consistently outperforms commonly used pruning schedules such as One-Shot Pruning, Iterative Pruning and Automated Gradual Pruning, on a fixed training budget.
We consider networks of small, autonomous devices that communicate with each other wirelessly. Minimizing energy usage is an important consideration in designing algorithms for such networks, as battery life is a crucial and limited resource. Working in a model where both sending and listening for messages deplete energy, we consider the problem of finding a maximal matching of the nodes in a radio network of arbitrary and unknown topology. We present a distributed randomized algorithm that produces, with high probability, a maximal matching. The maximum energy cost per node is $O(\log^2 n)$, where $n$ is the size of the network. The total latency of our algorithm is $O(n \log n)$ time steps. We observe that there exist families of network topologies for which both of these bounds are simultaneously optimal up to polylog factors, so any significant improvement will require additional assumptions about the network topology. We also consider the related problem of assigning, for each node in the network, a neighbor to back up its data in case of node failure. Here, a key goal is to minimize the maximum load, defined as the number of nodes assigned to a single node. We present a decentralized low-energy algorithm that finds a neighbor assignment whose maximum load is at most a polylog($n$) factor bigger that the optimum.
Self-attention is a key enabler of state-of-art accuracy for various transformer-based Natural Language Processing models. This attention mechanism calculates a correlation score for each word with respect to the other words in a sentence. Commonly, only a small subset of words highly correlates with the word under attention, which is only determined at runtime. As such, a significant amount of computation is inconsequential due to low attention scores and can potentially be pruned. The main challenge is finding the threshold for the scores below which subsequent computation will be inconsequential. Although such a threshold is discrete, this paper formulates its search through a soft differentiable regularizer integrated into the loss function of the training. This formulation piggy backs on the back-propagation training to analytically co-optimize the threshold and the weights simultaneously, striking a formally optimal balance between accuracy and computation pruning. To best utilize this mathematical innovation, we devise a bit-serial architecture, dubbed LeOPArd, for transformer language models with bit-level early termination microarchitectural mechanism. We evaluate our design across 43 back-end tasks for MemN2N, BERT, ALBERT, GPT-2, and Vision transformer models. Post-layout results show that, on average, LeOPArd yields 1.9x and 3.9x speedup and energy reduction, respectively, while keeping the average accuracy virtually intact (<0.2% degradation)
Simultaneous Localization and Mapping (SLAM) estimates agents' trajectories and constructs maps, and localization is a fundamental kernel in autonomous machines at all computing scales, from drones, AR, VR to self-driving cars. In this work, we present an energy-efficient and runtime-reconfigurable FPGA-based accelerator for robotic localization. We exploit SLAM-specific data locality, sparsity, reuse, and parallelism, and achieve >5x performance improvement over the state-of-the-art. Especially, our design is reconfigurable at runtime according to the environment to save power while sustaining accuracy and performance.
Decomposition-based evolutionary algorithms have become fairly popular for many-objective optimization in recent years. However, the existing decomposition methods still are quite sensitive to the various shapes of frontiers of many-objective optimization problems (MaOPs). On the one hand, the cone decomposition methods such as the penalty-based boundary intersection (PBI) are incapable of acquiring uniform frontiers for MaOPs with very convex frontiers. On the other hand, the parallel reference lines of the parallel decomposition methods including the normal boundary intersection (NBI) might result in poor diversity because of under-sampling near the boundaries for MaOPs with concave frontiers. In this paper, a collaborative decomposition method is first proposed to integrate the advantages of parallel decomposition and cone decomposition to overcome their respective disadvantages. This method inherits the NBI-style Tchebycheff function as a convergence measure to heighten the convergence and uniformity of distribution of the PBI method. Moreover, this method also adaptively tunes the extent of rotating an NBI reference line towards a PBI reference line for every subproblem to enhance the diversity of distribution of the NBI method. Furthermore, a collaborative decomposition-based evolutionary algorithm (CoDEA) is presented for many-objective optimization. A collaborative decomposition-based environmental selection mechanism is primarily designed in CoDEA to rank all the individuals associated with the same PBI reference line in the boundary layer and pick out the best ranks. CoDEA is compared with several popular algorithms on 85 benchmark test instances. The experimental results show that CoDEA achieves high competitiveness benefiting from the collaborative decomposition maintaining a good balance among the convergence, uniformity, and diversity of distribution.
We present a pipelined multiplier with reduced activities and minimized interconnect based on online digit-serial arithmetic. The working precision has been truncated such that $p<n$ bits are used to compute $n$ bits product, resulting in significant savings in area and power. The digit slices follow variable precision according to input, increasing upto $p$ and then decreases according to the error profile. Pipelining has been done to achieve high throughput and low latency which is desirable for compute intensive inner products. Synthesis results of the proposed designs have been presented and compared with the non-pipelined online multiplier, pipelined online multiplier with full working precision and conventional serial-parallel and array multipliers. For $8, 16, 24$ and $32$ bit precision, the proposed low power pipelined design show upto $38\%$ and $44\%$ reduction in power and area respectively compared to the pipelined online multiplier without working precision truncation.
Multi-object tracking (MOT) is a crucial component of situational awareness in military defense applications. With the growing use of unmanned aerial systems (UASs), MOT methods for aerial surveillance is in high demand. Application of MOT in UAS presents specific challenges such as moving sensor, changing zoom levels, dynamic background, illumination changes, obscurations and small objects. In this work, we present a robust object tracking architecture aimed to accommodate for the noise in real-time situations. We propose a kinematic prediction model, called Deep Extended Kalman Filter (DeepEKF), in which a sequence-to-sequence architecture is used to predict entity trajectories in latent space. DeepEKF utilizes a learned image embedding along with an attention mechanism trained to weight the importance of areas in an image to predict future states. For the visual scoring, we experiment with different similarity measures to calculate distance based on entity appearances, including a convolutional neural network (CNN) encoder, pre-trained using Siamese networks. In initial evaluation experiments, we show that our method, combining scoring structure of the kinematic and visual models within a MHT framework, has improved performance especially in edge cases where entity motion is unpredictable, or the data presents frames with significant gaps.