亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents a study of the Poof-of-Stake (PoW) Ethereum consensus protocol, following the recent switch from Proof-of-Work (PoS) to Proof-of-Stake within Merge upgrade. The new protocol has resulted in reduced energy consumption and a shift in economic incentives, but it has also introduced new threat sources such as chain reorganizations and balancing attacks. Using a simple and flexible agent-based model, this study employs a time-continuous simulation algorithm to analyze the evolution of the blocktree and assess the impact of initial conditions on consensus quality. The model simulates validator node behavior and the information propagation throughout the peer-to-peer network of validators to analyze the resulting blockchain structure. Key variables in the model include the topology of the peer-to-peer network and average block and attestation latencies. Metrics to evaluate consensus quality are established, and means to observe the model's responsiveness to changes in parameters are provided. The simulations reveal a phase transition in which the system switches from a consensus state to a non-consensus state, with a theoretical justification presented for this observation.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Agent · 博弈論 · Wireless Networks · INTERACT ·
2023 年 7 月 10 日

Evolutionary games are a developing sub-field of game theory. This branch of game theory is used in the study of the adaptation of large, but finite, populations of agents to changes in the environment. It assumes that each agent has no significant influence on the system. Many scientific areas use the theory of evolutionary games. In particular, it is used in biology, medicine and the modelling of wireless networks. In this paper we study an evolutionary game with two levels of interaction between population agents. At the first level, changes in the population state depend on changes in the environment and on increasing or decreasing the resources available to the agents. At the second level, the populations state changes according to how the agents evaluate the state of the environment. These levels form a hierarchical structure. A change in one parameter of the system, which is responsible for the state of the environment, the population or the opinions of the agents, causes a change in the other elements of the system. The study involves the analysis of a modified evolutionary game taking into account the influence of the environment and the opinions of the agents. It also involves the development of computational methods in MATLAB and two sets of numerical experiments.

The rise of social media platforms has facilitated the formation of echo chambers, which are online spaces where users predominantly encounter viewpoints that reinforce their existing beliefs while excluding dissenting perspectives. This phenomenon significantly hinders information dissemination across communities and fuels societal polarization. Therefore, it is crucial to develop methods for quantifying echo chambers. In this paper, we present the Echo Chamber Score (ECS), a novel metric that assesses the cohesion and separation of user communities by measuring distances between users in the embedding space. In contrast to existing approaches, ECS is able to function without labels for user ideologies and makes no assumptions about the structure of the interaction graph. To facilitate measuring distances between users, we propose EchoGAE, a self-supervised graph autoencoder-based user embedding model that leverages users' posts and the interaction graph to embed them in a manner that reflects their ideological similarity. To assess the effectiveness of ECS, we use a Twitter dataset consisting of four topics - two polarizing and two non-polarizing. Our results showcase ECS's effectiveness as a tool for quantifying echo chambers and shedding light on the dynamics of online discourse.

Model-Based Reinforcement Learning (RL) is widely believed to have the potential to improve sample efficiency by allowing an agent to synthesize large amounts of imagined experience. Experience Replay (ER) can be considered a simple kind of model, which has proved effective at improving the stability and efficiency of deep RL. In principle, a learned parametric model could improve on ER by generalizing from real experience to augment the dataset with additional plausible experience. However, given that learned value functions can also generalize, it is not immediately obvious why model generalization should be better. Here, we provide theoretical and empirical insight into when, and how, we can expect data generated by a learned model to be useful. First, we provide a simple theorem motivating how learning a model as an intermediate step can narrow down the set of possible value functions more than learning a value function directly from data using the Bellman equation. Second, we provide an illustrative example showing empirically how a similar effect occurs in a more concrete setting with neural network function approximation. Finally, we provide extensive experiments showing the benefit of model-based learning for online RL in environments with combinatorial complexity, but factored structure that allows a learned model to generalize. In these experiments, we take care to control for other factors in order to isolate, insofar as possible, the benefit of using experience generated by a learned model relative to ER alone.

Orienting the edges of an undirected graph such that the resulting digraph satisfies some given constraints is a classical problem in graph theory, with multiple algorithmic applications. In particular, an $st$-orientation orients each edge of the input graph such that the resulting digraph is acyclic, and it contains a single source $s$ and a single sink $t$. Computing an $st$-orientation of a graph can be done efficiently, and it finds notable applications in graph algorithms and in particular in graph drawing. On the other hand, finding an $st$-orientation with at most $k$ transitive edges is more challenging and it was recently proven to be NP-hard already when $k=0$. We strengthen this result by showing that the problem remains NP-hard even for graphs of bounded diameter, and for graphs of bounded vertex degree. These computational lower bounds naturally raise the question about which structural parameters can lead to tractable parameterizations of the problem. Our main result is a fixed-parameter tractable algorithm parameterized by treewidth.

This paper proposes a general optimization framework to improve the spectral and energy efficiency (EE) of ultra-reliable low-latency communication (URLLC) simultaneous-transfer-and-receive (STAR) reconfigurable intelligent surface (RIS)-assisted interference-limited systems with finite block length (FBL). This framework can solve a large variety of optimization problems in which the objective and/or constraints are linear functions of the rates and/or EE of users. Additionally, the framework can be applied to any interference-limited system with treating interference as noise as the decoding strategy at receivers. We consider a multi-cell broadcast channel as an example and show how this framework can be specialized to solve the minimum-weighted rate, weighted sum rate, global EE and weighted EE of the system. We make realistic assumptions regarding the (STAR-)RIS by considering three different feasibility sets for the components of either regular RIS or STAR-RIS. Our results show that RIS can substantially increase the spectral and EE of URLLC systems if the reflecting coefficients are properly optimized. Moreover, we consider three different transmission strategies for STAR-RIS as energy splitting (ES), mode switching (MS), and time switching (TS). We show that STAR-RIS can outperform a regular RIS when the regular RIS cannot cover all the users. Furthermore, it is shown that the ES scheme outperforms the MS and TS schemes.

We provide a rigorous analysis of training by variational inference (VI) of Bayesian neural networks in the two-layer and infinite-width case. We consider a regression problem with a regularized evidence lower bound (ELBO) which is decomposed into the expected log-likelihood of the data and the Kullback-Leibler (KL) divergence between the a priori distribution and the variational posterior. With an appropriate weighting of the KL, we prove a law of large numbers for three different training schemes: (i) the idealized case with exact estimation of a multiple Gaussian integral from the reparametrization trick, (ii) a minibatch scheme using Monte Carlo sampling, commonly known as Bayes by Backprop, and (iii) a new and computationally cheaper algorithm which we introduce as Minimal VI. An important result is that all methods converge to the same mean-field limit. Finally, we illustrate our results numerically and discuss the need for the derivation of a central limit theorem.

Electroencephalogram (EEG) signals reflect brain activity across different brain states, characterized by distinct frequency distributions. Through multifractal analysis tools, we investigate the scaling behaviour of different classes of EEG signals and artifacts. We show that brain states associated to sleep and general anaesthesia are not in general characterized by scale invariance. The lack of scale invariance motivates the development of artifact removal algorithms capable of operating independently at each scale. We examine here the properties of the wavelet quantile normalization algorithm, a recently introduced adaptive method for real-time correction of transient artifacts in EEG signals. We establish general results regarding the regularization properties of the WQN algorithm, showing how it can eliminate singularities introduced by artefacts, and we compare it to traditional thresholding algorithms. Furthermore, we show that the algorithm performance is independent of the wavelet basis. We finally examine its continuity and boundedness properties and illustrate its distinctive non-local action on the wavelet coefficients through pathological examples.

Despite being neighbouring countries and sharing the language of Bahasa Melayu (ISO 639-3:ZSM), cultural and language education policy differences between Singapore and Malaysia led to differences in the translation of the "annoying" perceived affective quality (PAQ) attribute from English (ISO 639-3:ENG) to ZSM. This study expands upon the translation of the PAQ attributes from eng to ZSM in Stage 1 of the Soundscapes Attributes Translation Project (SATP) initiative, and presents the findings of Stage 2 listening tests that investigated ethnonational differences in the translated ZSM PAQ attributes and explored their circumplexity. A cross-cultural listening test was conducted with 100 ZSM speakers from Malaysia and Singapore using the common SATP protocol. The analysis revealed that Malaysian participants from non-native ethnicities (my:o) showed PAQ perceptions more similar to Singapore (sg) participants than native ethnic Malays (MY:M) in Malaysia. Differences between Singapore and Malaysian groups were primarily observed in stimuli related to water features, reflecting cultural and geographical variations. Besides variations in water source-dominant stimuli perception, disparities between MY:M and SG could be mainly attributed to vibrant scores. The findings also suggest that the adoption of region-specific translations, such as membingitkan in Singapore and menjengkelkan in Malaysia, adequately addressed differences in the annoying attribute, as significant differences were observed in one or fewer stimuli across ethnonational groups The circumplexity analysis indicated that the quasi-circumplex model better fit the data compared to the assumed equal angle quasi-circumplex model in ISO/TS 12913-3, although deviations were observed possibly due to respondents' unfamiliarity with the United Kingdom-centric context of the stimulus dataset...

Technological advancements have made it possible to deliver mobile health interventions to individuals. A novel framework that has emerged from such advancements is the just-in-time adaptive intervention (JITAI), which aims to suggest the right support to the individuals when their needs arise. The micro-randomized trial (MRT) design has been proposed recently to test the proximal effects of these JITAIs. However, the extant MRT framework only considers components with a fixed number of categories added at the beginning of the study. We propose a flexible MRT (FlexiMRT) design which allows addition of more categories to the components during the study. The proposed design is motivated by collaboration on the DIAMANTE study, which learns to deliver text messages to encourage physical activity among the patients with diabetes and depression. We developed a new test statistic and the corresponding sample size calculator for the FlexiMRT using an approach similar to the generalized estimating equation for longitudinal data. Simulation studies were conducted to evaluate the sample size calculators and an R shiny application for the calculators was developed.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

北京阿比特科技有限公司