亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Numerous methods have been proposed for suppressing intentional forks by attackers in blockchain systems. Among these, last-generated rules, which select the latest chain among chains in a tie, are effective methods that do not require significant changes to the blockchain protocol. However, existing methods either require a trusted third party or rely on timestamps that attackers can manipulate which makes applying a last-generated rule to existing systems such as Bitcoin challenging. To address these issues, we propose a last-generated rule that can be easily applied to existing proof of work blockchain systems. Our method uses partial proof of work, which does not function as a block, as a time standard with finer granularity. Only weak synchronization, which is already met by existing systems, is required for effective functioning. We evaluated the proposed method through a detailed analysis that is lacking in existing works. In networks that adopt our method, the proportion of the attacker hashrate necessary for selfish mining was approximately 0.31479 or higher, regardless of the block propagation capability of the attacker. Furthermore, we demonstrated through extended selfish mining that the impact of Match against pre-generated block, which is a concern in all last-generated rules, can be mitigated with appropriate parameter settings.

相關內容

We propose the on-the-fly ensembling of a machine translation model with an LLM, prompted on the same task and input. We perform experiments on 4 language pairs (both directions) with varying data amounts. We find that a slightly weaker-at-translation LLM can improve translations of a NMT model, and ensembling with an LLM can produce better translations than ensembling two stronger MT models. We combine our method with various techniques from LLM prompting, such as in context learning and translation context.

Malware attacks have become significantly more frequent and sophisticated in recent years. Therefore, malware detection and classification are critical components of information security. Due to the large amount of malware samples available, it is essential to categorize malware samples according to their malicious characteristics. Clustering algorithms are thus becoming more widely used in computer security to analyze the behavior of malware variants and discover new malware families. Online clustering algorithms help us to understand malware behavior and produce a quicker response to new threats. This paper introduces a novel machine learning-based model for the online clustering of malicious samples into malware families. Streaming data is divided according to the clustering decision rule into samples from known and new emerging malware families. The streaming data is classified using the weighted k-nearest neighbor classifier into known families, and the online k-means algorithm clusters the remaining streaming data and achieves a purity of clusters from 90.20% for four clusters to 93.34% for ten clusters. This work is based on static analysis of portable executable files for the Windows operating system. Experimental results indicate that the proposed online clustering model can create high-purity clusters corresponding to malware families. This allows malware analysts to receive similar malware samples, speeding up their analysis.

Large Language Models (LLMs) have demonstrated unparalleled effectiveness in various NLP tasks, and integrating LLMs with automatic speech recognition (ASR) is becoming a mainstream paradigm. Building upon this momentum, our research delves into an in-depth examination of this paradigm on a large open-source Chinese dataset. Specifically, our research aims to evaluate the impact of various configurations of speech encoders, LLMs, and projector modules in the context of the speech foundation encoder-LLM ASR paradigm. Furthermore, we introduce a three-stage training approach, expressly developed to enhance the model's ability to align auditory and textual information. The implementation of this approach, alongside the strategic integration of ASR components, enabled us to achieve the SOTA performance on the AISHELL-1, Test_Net, and Test_Meeting test sets. Our analysis presents an empirical foundation for future research in LLM-based ASR systems and offers insights into optimizing performance using Chinese datasets. We will publicly release all scripts used for data preparation, training, inference, and scoring, as well as pre-trained models and training logs to promote reproducible research.

Cellular Automata (CA) have been extensively used to implement symmetric cryptographic primitives, such as pseudorandom number generators and S-boxes. However, most of the research in this field, except the very early works, seems to be published in non-cryptographic venues. This phenomenon poses a problem of relevance: are CA of any use to cryptographers nowadays? This paper provides insights into this question by briefly outlining the history of CA-based cryptography. In doing so, the paper identifies some shortcomings in the research addressing the design of symmetric primitives exclusively from a CA standpoint, alongside some recommendations for future research. Notably, the paper remarks that researchers working in CA and cryptography often tackle similar problems, albeit under different perspectives and terminologies. This observation indicates that there is still ample room for fruitful collaborations between the CA and cryptography communities in the future.

Generative AI capabilities are rapidly transforming how we perceive, interact with, and relate to machines. This one-day workshop invites HCI researchers, designers, and practitioners to imaginatively inhabit and explore the possible futures that might emerge from humans combining generative AI capabilities into everyday technologies at massive scale. Workshop participants will craft stories, visualisations, and prototypes through scenario-based design to investigate these possible futures, resulting in the production of an open-annotated scenario library and a journal or interactions article to disseminate the findings. We aim to gather the DIS community knowledge to explore, understand and shape the relations this new interaction paradigm is forging between humans, their technologies and the environment in safe, sustainable, enriching, and responsible ways.

Children can rapidly generalize compositionally-constructed rules to unseen test sets. On the other hand, deep reinforcement learning (RL) agents need to be trained over millions of episodes, and their ability to generalize to unseen combinations remains unclear. Hence, we investigate the compositional abilities of RL agents, using the task of navigating to specified color-shape targets in synthetic 3D environments. First, we show that when RL agents are naively trained to navigate to target color-shape combinations, they implicitly learn to decompose the combinations, allowing them to (re-)compose these and succeed at held-out test combinations ("compositional learning"). Second, when agents are pretrained to learn invariant shape and color concepts ("concept learning"), the number of episodes subsequently needed for compositional learning decreased by 20 times. Furthermore, only agents trained on both concept and compositional learning could solve a more complex, out-of-distribution environment in zero-shot fashion. Finally, we verified that only text encoders pretrained on image-text datasets (e.g. CLIP) reduced the number of training episodes needed for our agents to demonstrate compositional learning, and also generalized to 5 unseen colors in zero-shot fashion. Overall, our results are the first to demonstrate that RL agents can be trained to implicitly learn concepts and compositionality, to solve more complex environments in zero-shot fashion.

Researchers and practitioners have recently reframed powerful Large Language Models (LLMs) as agents, enabling them to automate complex tasks largely via the use of specialized functions. To facilitate the development of LLM agents, we present a novel paradigm of training LLM agents without modifying the LLM weights, which is particularly useful when the LLMs are difficult or inaccessible for modifications. Inspired by how humans continuously forge tools to adapt to real-world tasks, rather than change our biological structure to fit a static set of tools, we propose to progressively forge agent's functions to better solve the downstream tasks instead of modifying the LLM weights. By treating the functions as learnable `agent parameters' and leveraging the fundamental idea of model training in artificial intelligence, we develop AgentOptimizer that employs the LLM to update agents' functions and devise an agent training algorithm with two strategies, roll-back, and early-stop, to streamline the training process. With extensive experiments, we showcase that the agent training paradigm could significantly improve the performance of representative LLM agents in various downstream tasks. We also study the behavior of the agent training regarding aspects like the learning curve and domain transferability.

We present a top-down lower-bound method for depth-$4$ boolean circuits. In particular, we give a new proof of the well-known result that the parity function requires depth-$4$ circuits of size exponential in $n^{1/3}$. Our proof is an application of robust sunflowers and block unpredictability.

Answering questions that require reading texts in an image is challenging for current models. One key difficulty of this task is that rare, polysemous, and ambiguous words frequently appear in images, e.g., names of places, products, and sports teams. To overcome this difficulty, only resorting to pre-trained word embedding models is far from enough. A desired model should utilize the rich information in multiple modalities of the image to help understand the meaning of scene texts, e.g., the prominent text on a bottle is most likely to be the brand. Following this idea, we propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN). It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively. Then, we introduce three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities, so as to refine the features of nodes. The updated nodes have better features for the downstream question answering module. Experimental evaluations show that our MM-GNN represents the scene texts better and obviously facilitates the performances on two VQA tasks that require reading scene texts.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司