亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Mobility plays a fundamental role in modern cities. How citizens experience the city, access its core services, and participate in city life, strongly depends on its mobility organization and efficiency. The challenges that municipalities face are very ambitious: on the one hand, administrators must guarantee their citizens the right to mobility and to easily access local services; on the other hand, they need to minimize the economic, social, and environmental costs of the mobility system. Municipalities are increasingly facing problems of traffic congestion, road safety, energy dependency and air pollution, and therefore encouraging a shift towards sustainable mobility habits based on active mobility is of central importance. Active modes, such as cycling, should be particularly encouraged, especially for local recurrent journeys (i.e., home-to-school, home-to-work). In this context, addressing and mitigating commuter-generated traffic requires engaging public and private stakeholders through innovative and collaborative approaches that focus not only on supply (e.g., roads and vehicles) but also on transportation demand management. In this paper, we propose an end-to-end solution for enabling urban cyclability. It supports the companies' Mobility Managers (MMs) acting on the promotion of active mobility for home-to-work commuting, helps the city administrators to understand the needed urban planning interventions, and motivates the citizens to sustainable mobility. To evaluate the effectiveness of the proposed solution we developed two analyses: the first to accurately analyze the user experience and any behaviour change related to the BIKE2WORK initiative, and the second to demonstrate how exploiting the collected data we can inform and possible guide the involved municipality (i.e., Ferrara, a city in Northern Italy) in improving the urban cyclability.

相關內容

Video understanding is an important problem in computer vision. Currently, the well-studied task in this research is human action recognition, where the clips are manually trimmed from the long videos, and a single class of human action is assumed for each clip. However, we may face more complicated scenarios in the industrial applications. For example, in the real-world urban pipe system, anomaly defects are fine-grained, multi-labeled, domain-relevant. To recognize them correctly, we need to understand the detailed video content. For this reason, we propose to advance research areas of video understanding, with a shift from traditional action recognition to industrial anomaly analysis. In particular, we introduce two high-quality video benchmarks, namely QV-Pipe and CCTV-Pipe, for anomaly inspection in the real-world urban pipe systems. Based on these new datasets, we will host two competitions including (1) Video Defect Classification on QV-Pipe and (2) Temporal Defect Localization on CCTV-Pipe. In this report, we describe the details of these benchmarks, the problem definitions of competition tracks, the evaluation metric, and the result summary. We expect that, this competition would bring new opportunities and challenges for video understanding in smart city and beyond. The details of our VideoPipe challenge can be found in //videopipe.github.io.

Real-time end-to-end task scheduling in networked control systems (NCSs) requires the joint consideration of both network and computing resources to guarantee the desired quality of service (QoS). This paper introduces a new model for composite resource scheduling (CRS) in real-time networked control systems, which considers a strict execution order of sensing, computing, and actuating segments based on the control loop of the target NCS. We prove that the general CRS problem is NP-hard and study two special cases of the CRS problem. The first case restricts the computing and actuating segments to have unit-size execution time while the second case assumes that both sensing and actuating segments have unit-size execution time. We propose an optimal algorithm to solve the first case by checking the intervals with 100% network resource utilization and modify the deadlines of the tasks within those intervals to prune the search. For the second case, we propose another optimal algorithm based on a novel backtracking strategy to check the time intervals with the network resource utilization larger than 100% and modify the timing parameters of tasks based on these intervals. For the general case, we design a greedy strategy to modify the timing parameters of both network segments and computing segments within the time intervals that have network and computing resource utilization larger than 100%, respectively. The correctness and effectiveness of the proposed algorithms are verified through extensive experiments.

Reinforcement Learning (RL) algorithms can solve challenging control problems directly from image observations, but they often require millions of environment interactions to do so. Recently, model-based RL algorithms have greatly improved sample-efficiency by concurrently learning an internal model of the world, and supplementing real environment interactions with imagined rollouts for policy improvement. However, learning an effective model of the world from scratch is challenging, and in stark contrast to humans that rely heavily on world understanding and visual cues for learning new skills. In this work, we investigate whether internal models learned by modern model-based RL algorithms can be leveraged to solve new, distinctly different tasks faster. We propose Model-Based Cross-Task Transfer (XTRA), a framework for sample-efficient online RL with scalable pretraining and finetuning of learned world models. By offline multi-task pretraining and online cross-task finetuning, we achieve substantial improvements on the Atari100k benchmark over a baseline trained from scratch; we improve mean performance of model-based algorithm EfficientZero by 23%, and by as much as 71% in some instances. Project page: //nicklashansen.github.io/xtra.

Urban road traffic continuously evolves under uncertainty. Existing traffic control systems only possess a local perspective over the multiple scales of traffic evolution, namely the intersection level, the corridor level, and the region level respectively. Capturing uncertainty under complex traffic spatio-temporal interactions is a very difficult problem and we often experience how fragile such systems are in reality. But luckily, despite its complex mechanics, traffic is described by various periodic phenomena. Workday flow distributions in the morning and evening commuting times can be exploited to make traffic adaptive and robust to disruptions. Additionally, controlling traffic is also based on a periodic process, choosing the phase of green time to allocate to opposite directions right of the pass and complementary red time phase for adjacent directions. In our work, we consider a novel system for road traffic control based on a network of interacting oscillators. Such a model has the advantage to capture temporal and spatial interactions of traffic light phasing as well as the network-level evolution of the traffic macroscopic features (i.e. flow, density). In this study, we propose a new realization of the antifragile control framework to control a network of interacting oscillator-based traffic light models to achieve region-level flow optimization. We demonstrate that antifragile control can capture the volatility of the urban road environment and the uncertainty about the distribution of the disruptions that can occur. We complement our control-theoretic design and analysis with experiments on a real-world setup comparatively discussing the benefits of an antifragile design for traffic control.

The steadily high demand for cash contributes to the expansion of the network of Bank payment terminals. To optimize the amount of cash in payment terminals, it is necessary to minimize the cost of servicing them and ensure that there are no excess funds in the network. The purpose of this work is to create a cash management system in the network of payment terminals. The article discusses the solution to the problem of determining the optimal amount of funds to be loaded into the terminals, and the effective frequency of collection, which allows to get additional income by investing the released funds. The paper presents the results of predicting daily cash withdrawals at ATMs using a triple exponential smoothing model, a recurrent neural network with long short-term memory, and a model of singular spectrum analysis. These forecasting models allowed us to obtain a sufficient level of correct forecasts with good accuracy and completeness. The results of forecasting cash withdrawals were used to build a discrete optimal control model, which was used to develop an optimal schedule for adding funds to the payment terminal. It is proved that the efficiency and reliability of the proposed model is higher than that of the classical Baumol-Tobin inventory management model: when tested on the time series of three ATMs, the discrete optimal control model did not allow exhaustion of funds and allowed to earn on average 30% more than the classical model.

Machine learning (ML) formalizes the problem of getting computers to learn from experience as optimization of performance according to some metric(s) on a set of data examples. This is in contrast to requiring behaviour specified in advance (e.g. by hard-coded rules). Formalization of this problem has enabled great progress in many applications with large real-world impact, including translation, speech recognition, self-driving cars, and drug discovery. But practical instantiations of this formalism make many assumptions - for example, that data are i.i.d.: independent and identically distributed - whose soundness is seldom investigated. And in making great progress in such a short time, the field has developed many norms and ad-hoc standards, focused on a relatively small range of problem settings. As applications of ML, particularly in artificial intelligence (AI) systems, become more pervasive in the real world, we need to critically examine these assumptions, norms, and problem settings, as well as the methods that have become de-facto standards. There is much we still do not understand about how and why deep networks trained with stochastic gradient descent are able to generalize as well as they do, why they fail when they do, and how they will perform on out-of-distribution data. In this thesis I cover some of my work towards better understanding deep net generalization, identify several ways assumptions and problem settings fail to generalize to the real world, and propose ways to address those failures in practice.

Numerical simulations are ubiquitous in mathematics and computational science. Several industrial and clinical applications entail modeling complex multiphysics systems that evolve over a variety of spatial and temporal scales. This study introduces the design and capabilities of lifex, an open source C++ library for high performance finite element simulations of multiphysics, multiscale, and multidomain problems. lifex meets the emerging need for versatile, efficient computational tools that are easily accessed by users and developers. We showcase its flexibility and effectiveness on a number of illustrative examples and advanced applications of use and demonstrate its parallel performance up to thousands of cores.

In this paper we present a bilevel optimization scheme for the solution of a general image deblurring problem, in which a parametric variational-like approach is encapsulated within a machine learning scheme to provide a high quality reconstructed image with automatically learned parameters. The ingredients of the variational lower level and the machine learning upper one are specifically chosen for the Helsinki Deblur Challenge 2021, in which sequences of letters are asked to be recovered from out-of-focus photographs with increasing levels of blur. Our proposed procedure for the reconstructed image consists in a fixed number of FISTA iterations applied to the minimization of an edge preserving and binarization enforcing regularized least-squares functional. The parameters defining the variational model and the optimization steps, which, unlike most deep learning approaches, all have a precise and interpretable meaning, are learned via either a similarity index or a support vector machine strategy. Numerical experiments on the test images provided by the challenge authors show significant gains with respect to a standard variational approach and performances comparable with those of some of the proposed deep learning based algorithms which require the optimization of millions of parameters.

Co-evolving time series appears in a multitude of applications such as environmental monitoring, financial analysis, and smart transportation. This paper aims to address the following challenges, including (C1) how to incorporate explicit relationship networks of the time series; (C2) how to model the implicit relationship of the temporal dynamics. We propose a novel model called Network of Tensor Time Series, which is comprised of two modules, including Tensor Graph Convolutional Network (TGCN) and Tensor Recurrent Neural Network (TRNN). TGCN tackles the first challenge by generalizing Graph Convolutional Network (GCN) for flat graphs to tensor graphs, which captures the synergy between multiple graphs associated with the tensors. TRNN leverages tensor decomposition to model the implicit relationships among co-evolving time series. The experimental results on five real-world datasets demonstrate the efficacy of the proposed method.

To address the sparsity and cold start problem of collaborative filtering, researchers usually make use of side information, such as social networks or item attributes, to improve recommendation performance. This paper considers the knowledge graph as the source of side information. To address the limitations of existing embedding-based and path-based methods for knowledge-graph-aware recommendation, we propose Ripple Network, an end-to-end framework that naturally incorporates the knowledge graph into recommender systems. Similar to actual ripples propagating on the surface of water, Ripple Network stimulates the propagation of user preferences over the set of knowledge entities by automatically and iteratively extending a user's potential interests along links in the knowledge graph. The multiple "ripples" activated by a user's historically clicked items are thus superposed to form the preference distribution of the user with respect to a candidate item, which could be used for predicting the final clicking probability. Through extensive experiments on real-world datasets, we demonstrate that Ripple Network achieves substantial gains in a variety of scenarios, including movie, book and news recommendation, over several state-of-the-art baselines.

北京阿比特科技有限公司