We study stochastic convex optimization with heavy-tailed data under the constraint of differential privacy (DP). Most prior work on this problem is restricted to the case where the loss function is Lipschitz. Instead, as introduced by Wang, Xiao, Devadas, and Xu \cite{WangXDX20}, we study general convex loss functions with the assumption that the distribution of gradients has bounded $k$-th moments. We provide improved upper bounds on the excess population risk under concentrated DP for convex and strongly convex loss functions. Along the way, we derive new algorithms for private mean estimation of heavy-tailed distributions, under both pure and concentrated DP. Finally, we prove nearly-matching lower bounds for private stochastic convex optimization with strongly convex losses and mean estimation, showing new separations between pure and concentrated DP.
Temporal difference (TD) learning is a widely used method to evaluate policies in reinforcement learning. While many TD learning methods have been developed in recent years, little attention has been paid to preserving privacy and most of the existing approaches might face the concerns of data privacy from users. To enable complex representative abilities of policies, in this paper, we consider preserving privacy in TD learning with nonlinear value function approximation. This is challenging because such a nonlinear problem is usually studied in the formulation of stochastic nonconvex-strongly-concave optimization to gain finite-sample analysis, which would require simultaneously preserving the privacy on primal and dual sides. To this end, we employ a momentum-based stochastic gradient descent ascent to achieve a single-timescale algorithm, and achieve a good trade-off between meaningful privacy and utility guarantees of both the primal and dual sides by perturbing the gradients on both sides using well-calibrated Gaussian noises. As a result, our DPTD algorithm could provide $(\epsilon,\delta)$-differential privacy (DP) guarantee for the sensitive information encoded in transitions and retain the original power of TD learning, with the utility upper bounded by $\widetilde{\mathcal{O}}(\frac{(d\log(1/\delta))^{1/8}}{(n\epsilon)^{1/4}})$ (The tilde in this paper hides the log factor.), where $n$ is the trajectory length and $d$ is the dimension. Extensive experiments conducted in OpenAI Gym show the advantages of our proposed algorithm.
We develop a novel procedure for estimating the optimizer of general convex stochastic optimization problems of the form $\min_{x\in\mathcal{X}} \mathbb{E}[F(x,\xi)]$, when the given data is a finite independent sample selected according to $\xi$. The procedure is based on a median-of-means tournament, and is the first procedure that exhibits the optimal statistical performance in heavy tailed situations: we recover the asymptotic rates dictated by the central limit theorem in a non-asymptotic manner once the sample size exceeds some explicitly computable threshold. Additionally, our results apply in the high-dimensional setup, as the threshold sample size exhibits the optimal dependence on the dimension (up to a logarithmic factor). The general setting allows us to recover recent results on multivariate mean estimation and linear regression in heavy-tailed situations and to prove the first sharp, non-asymptotic results for the portfolio optimization problem.
Federated learning (FL) has attracted much attention as a privacy-preserving distributed machine learning framework, where many clients collaboratively train a machine learning model by exchanging model updates with a parameter server instead of sharing their raw data. Nevertheless, FL training suffers from slow convergence and unstable performance due to stragglers caused by the heterogeneous computational resources of clients and fluctuating communication rates. This paper proposes a coded FL framework, namely *stochastic coded federated learning* (SCFL) to mitigate the straggler issue. In the proposed framework, each client generates a privacy-preserving coded dataset by adding additive noise to the random linear combination of its local data. The server collects the coded datasets from all the clients to construct a composite dataset, which helps to compensate for the straggling effect. In the training process, the server as well as clients perform mini-batch stochastic gradient descent (SGD), and the server adds a make-up term in model aggregation to obtain unbiased gradient estimates. We characterize the privacy guarantee by the mutual information differential privacy (MI-DP) and analyze the convergence performance in federated learning. Besides, we demonstrate a privacy-performance tradeoff of the proposed SCFL method by analyzing the influence of the privacy constraint on the convergence rate. Finally, numerical experiments corroborate our analysis and show the benefits of SCFL in achieving fast convergence while preserving data privacy.
Federated learning (FL), as an emerging edge artificial intelligence paradigm, enables many edge devices to collaboratively train a global model without sharing their private data. To enhance the training efficiency of FL, various algorithms have been proposed, ranging from first-order to second-order methods. However, these algorithms cannot be applied in scenarios where the gradient information is not available, e.g., federated black-box attack and federated hyperparameter tuning. To address this issue, in this paper we propose a derivative-free federated zeroth-order optimization (FedZO) algorithm featured by performing multiple local updates based on stochastic gradient estimators in each communication round and enabling partial device participation. Under the non-convex setting, we derive the convergence performance of the FedZO algorithm and characterize the impact of the numbers of local iterates and participating edge devices on the convergence. To enable communication-efficient FedZO over wireless networks, we further propose an over-the-air computation (AirComp) assisted FedZO algorithm. With an appropriate transceiver design, we show that the convergence of AirComp-assisted FedZO can still be preserved under certain signal-to-noise ratio conditions. Simulation results demonstrate the effectiveness of the FedZO algorithm and validate the theoretical observations.
Stochastic gradient descent ascent (SGDA) and its variants have been the workhorse for solving minimax problems. However, in contrast to the well-studied stochastic gradient descent (SGD) with differential privacy (DP) constraints, there is little work on understanding the generalization (utility) of SGDA with DP constraints. In this paper, we use the algorithmic stability approach to establish the generalization (utility) of DP-SGDA in different settings. In particular, for the convex-concave setting, we prove that the DP-SGDA can achieve an optimal utility rate in terms of the weak primal-dual population risk in both smooth and non-smooth cases. To our best knowledge, this is the first-ever-known result for DP-SGDA in the non-smooth case. We further provide its utility analysis in the nonconvex-strongly-concave setting which is the first-ever-known result in terms of the primal population risk. The convergence and generalization results for this nonconvex setting are new even in the non-private setting. Finally, numerical experiments are conducted to demonstrate the effectiveness of DP-SGDA for both convex and nonconvex cases.
We analyze the orthogonal greedy algorithm when applied to dictionaries $\mathbb{D}$ whose convex hull has small entropy. We show that if the metric entropy of the convex hull of $\mathbb{D}$ decays at a rate of $O(n^{-\frac{1}{2}-\alpha})$ for $\alpha > 0$, then the orthogonal greedy algorithm converges at the same rate on the variation space of $\mathbb{D}$. This improves upon the well-known $O(n^{-\frac{1}{2}})$ convergence rate of the orthogonal greedy algorithm in many cases, most notably for dictionaries corresponding to shallow neural networks. These results hold under no additional assumptions on the dictionary beyond the decay rate of the entropy of its convex hull. In addition, they are robust to noise in the target function and can be extended to convergence rates on the interpolation spaces of the variation norm. We show empirically that the predicted rates are obtained for the dictionary corresponding to shallow neural networks with Heaviside activation function in two dimensions. Finally, we show that these improved rates are sharp and prove a negative result showing that the iterates generated by the orthogonal greedy algorithm cannot in general be bounded in the variation norm of $\mathbb{D}$.
Self-training, a semi-supervised learning algorithm, leverages a large amount of unlabeled data to improve learning when the labeled data are limited. Despite empirical successes, its theoretical characterization remains elusive. To the best of our knowledge, this work establishes the first theoretical analysis for the known iterative self-training paradigm and proves the benefits of unlabeled data in both training convergence and generalization ability. To make our theoretical analysis feasible, we focus on the case of one-hidden-layer neural networks. However, theoretical understanding of iterative self-training is non-trivial even for a shallow neural network. One of the key challenges is that existing neural network landscape analysis built upon supervised learning no longer holds in the (semi-supervised) self-training paradigm. We address this challenge and prove that iterative self-training converges linearly with both convergence rate and generalization accuracy improved in the order of $1/\sqrt{M}$, where $M$ is the number of unlabeled samples. Experiments from shallow neural networks to deep neural networks are also provided to justify the correctness of our established theoretical insights on self-training.
We study the problem of parameter estimation for discretely observed stochastic differential equations driven by small fractional noise. Under some conditions, we obtain strong consistency and rate of convergence of the least square estimator(LSE) when small dispersion coefficient converges to 0 and sample size converges to infty.
Alternating Direction Method of Multipliers (ADMM) is a widely used tool for machine learning in distributed settings, where a machine learning model is trained over distributed data sources through an interactive process of local computation and message passing. Such an iterative process could cause privacy concerns of data owners. The goal of this paper is to provide differential privacy for ADMM-based distributed machine learning. Prior approaches on differentially private ADMM exhibit low utility under high privacy guarantee and often assume the objective functions of the learning problems to be smooth and strongly convex. To address these concerns, we propose a novel differentially private ADMM-based distributed learning algorithm called DP-ADMM, which combines an approximate augmented Lagrangian function with time-varying Gaussian noise addition in the iterative process to achieve higher utility for general objective functions under the same differential privacy guarantee. We also apply the moments accountant method to bound the end-to-end privacy loss. The theoretical analysis shows that DP-ADMM can be applied to a wider class of distributed learning problems, is provably convergent, and offers an explicit utility-privacy tradeoff. To our knowledge, this is the first paper to provide explicit convergence and utility properties for differentially private ADMM-based distributed learning algorithms. The evaluation results demonstrate that our approach can achieve good convergence and model accuracy under high end-to-end differential privacy guarantee.
We propose accelerated randomized coordinate descent algorithms for stochastic optimization and online learning. Our algorithms have significantly less per-iteration complexity than the known accelerated gradient algorithms. The proposed algorithms for online learning have better regret performance than the known randomized online coordinate descent algorithms. Furthermore, the proposed algorithms for stochastic optimization exhibit as good convergence rates as the best known randomized coordinate descent algorithms. We also show simulation results to demonstrate performance of the proposed algorithms.