We present the asymptotic transitions from microscopic to macroscopic physics, their computational challenges and the Asymptotic-Preserving (AP) strategies to efficiently compute multiscale physical problems. Specifically, we will first study the asymptotic transition from quantum to classical mechanics, from classical mechanics to kinetic theory, and then from kinetic theory to hydrodynamics. We then review some representative AP schemes that mimic, at the discrete level, these asymptotic transitions, hence can be used crossing scales and, in particular, capture the macroscopic behavior without resolving numerically the microscopic physical scale.
This paper aims to initialize a dynamical aspect of symbolic integration by studying stability problems in differential fields. We present some basic properties of stable elementary functions and D-finite power series that enable us to characterize three special families of stable elementary functions involving rational functions, logarithmic functions, and exponential functions. Some problems for future studies are proposed towards deeper dynamical studies in differential and difference algebra.
We consider a specific class of polynomial systems that arise in parameter identifiability problems of models of ordinary differential equations (ODE) and discover a method for speeding up the Gr\"obner basis computation by using a weighted ordering. Our method explores the structure of the ODE model to generate weight assignments for each variable. We provide empirical results that show improvement across different symbolic computing frameworks
Solutions of the Helmholtz equation are known to be well approximated by superpositions of propagative plane waves. This observation is the foundation of successful Trefftz methods. However, when too many plane waves are used, the computation of the expansion is known to be numerically unstable. We explain how this effect is due to the presence of exponentially large coefficients in the expansion and can drastically limit the efficiency of the approach. In this work, we show that the Helmholtz solutions on a disk can be exactly represented by a continuous superposition of evanescent plane waves, generalizing the standard Herglotz representation. Here, by evanescent plane waves, we mean exponential plane waves with complex-valued propagation vector, whose absolute value decays exponentially in one direction. In addition, the density in this representation is proved to be uniformly bounded in a suitable weighted Lebesgue norm, hence overcoming the instability observed with propagative plane waves and paving the way for stable discrete expansions. In view of practical implementations, discretization strategies are investigated. We construct suitable finite-dimensional sets of evanescent plane waves using sampling strategies in a parametric domain. Provided one uses sufficient oversampling and regularization, the resulting approximations are shown to be both controllably accurate and numerically stable, as supported by numerical evidence.
We consider a kinetic description of a multi-species gas mixture modeled with Bhatnagar-Gross-Krook (BGK) collision operators, in which the collision frequency varies not only in time and space but also with the microscopic velocity. In this model, the Maxwellians typically used in standard BGK operators are replaced by a generalization of such target functions, which are defined by a variational procedure \cite{arXiv:2101.09047}. In this paper we present a numerical method for simulating this model, which uses an Implicit-Explicit (IMEX) scheme to minimize a certain potential function, mimicking the Lagrange functional that appears in the theoretical derivation. We show that theoretical properties such as conservation of mass, total momentum and total energy as well as positivity of the distribution functions are preserved by the numerical method, and illustrate its usefulness and effectiveness with numerical examples.
Detection of malicious behavior is a fundamental problem in security. One of the major challenges in using detection systems in practice is in dealing with an overwhelming number of alerts that are triggered by normal behavior (the so-called false positives), obscuring alerts resulting from actual malicious activity. While numerous methods for reducing the scope of this issue have been proposed, ultimately one must still decide how to prioritize which alerts to investigate, and most existing prioritization methods are heuristic, for example, based on suspiciousness or priority scores. We introduce a novel approach for computing a policy for prioritizing alerts using adversarial reinforcement learning. Our approach assumes that the attackers know the full state of the detection system and dynamically choose an optimal attack as a function of this state, as well as of the alert prioritization policy. The first step of our approach is to capture the interaction between the defender and attacker in a game theoretic model. To tackle the computational complexity of solving this game to obtain a dynamic stochastic alert prioritization policy, we propose an adversarial reinforcement learning framework. In this framework, we use neural reinforcement learning to compute best response policies for both the defender and the adversary to an arbitrary stochastic policy of the other. We then use these in a double-oracle framework to obtain an approximate equilibrium of the game, which in turn yields a robust stochastic policy for the defender. Extensive experiments using case studies in fraud and intrusion detection demonstrate that our approach is effective in creating robust alert prioritization policies.
In this paper, from a theoretical perspective, we study how powerful graph neural networks (GNNs) can be for learning approximation algorithms for combinatorial problems. To this end, we first establish a new class of GNNs that can solve strictly a wider variety of problems than existing GNNs. Then, we bridge the gap between GNN theory and the theory of distributed local algorithms to theoretically demonstrate that the most powerful GNN can learn approximation algorithms for the minimum dominating set problem and the minimum vertex cover problem with some approximation ratios and that no GNN can perform better than with these ratios. This paper is the first to elucidate approximation ratios of GNNs for combinatorial problems. Furthermore, we prove that adding coloring or weak-coloring to each node feature improves these approximation ratios. This indicates that preprocessing and feature engineering theoretically strengthen model capabilities.
Reinforcement learning (RL) algorithms have been around for decades and been employed to solve various sequential decision-making problems. These algorithms however have faced great challenges when dealing with high-dimensional environments. The recent development of deep learning has enabled RL methods to drive optimal policies for sophisticated and capable agents, which can perform efficiently in these challenging environments. This paper addresses an important aspect of deep RL related to situations that demand multiple agents to communicate and cooperate to solve complex tasks. A survey of different approaches to problems related to multi-agent deep RL (MADRL) is presented, including non-stationarity, partial observability, continuous state and action spaces, multi-agent training schemes, multi-agent transfer learning. The merits and demerits of the reviewed methods will be analyzed and discussed, with their corresponding applications explored. It is envisaged that this review provides insights about various MADRL methods and can lead to future development of more robust and highly useful multi-agent learning methods for solving real-world problems.
We detail a new framework for privacy preserving deep learning and discuss its assets. The framework puts a premium on ownership and secure processing of data and introduces a valuable representation based on chains of commands and tensors. This abstraction allows one to implement complex privacy preserving constructs such as Federated Learning, Secure Multiparty Computation, and Differential Privacy while still exposing a familiar deep learning API to the end-user. We report early results on the Boston Housing and Pima Indian Diabetes datasets. While the privacy features apart from Differential Privacy do not impact the prediction accuracy, the current implementation of the framework introduces a significant overhead in performance, which will be addressed at a later stage of the development. We believe this work is an important milestone introducing the first reliable, general framework for privacy preserving deep learning.
We present an end-to-end framework for solving the Vehicle Routing Problem (VRP) using reinforcement learning. In this approach, we train a single model that finds near-optimal solutions for problem instances sampled from a given distribution, only by observing the reward signals and following feasibility rules. Our model represents a parameterized stochastic policy, and by applying a policy gradient algorithm to optimize its parameters, the trained model produces the solution as a sequence of consecutive actions in real time, without the need to re-train for every new problem instance. On capacitated VRP, our approach outperforms classical heuristics and Google's OR-Tools on medium-sized instances in solution quality with comparable computation time (after training). We demonstrate how our approach can handle problems with split delivery and explore the effect of such deliveries on the solution quality. Our proposed framework can be applied to other variants of the VRP such as the stochastic VRP, and has the potential to be applied more generally to combinatorial optimization problems.
The field of Multi-Agent System (MAS) is an active area of research within Artificial Intelligence, with an increasingly important impact in industrial and other real-world applications. Within a MAS, autonomous agents interact to pursue personal interests and/or to achieve common objectives. Distributed Constraint Optimization Problems (DCOPs) have emerged as one of the prominent agent architectures to govern the agents' autonomous behavior, where both algorithms and communication models are driven by the structure of the specific problem. During the last decade, several extensions to the DCOP model have enabled them to support MAS in complex, real-time, and uncertain environments. This survey aims at providing an overview of the DCOP model, giving a classification of its multiple extensions and addressing both resolution methods and applications that find a natural mapping within each class of DCOPs. The proposed classification suggests several future perspectives for DCOP extensions, and identifies challenges in the design of efficient resolution algorithms, possibly through the adaptation of strategies from different areas.