亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Subjective image quality assessment studies are used in many scenarios, such as the evaluation of compression, super-resolution, and denoising solutions. Among the available subjective test methodologies, pair comparison is attracting popularity due to its simplicity, reliability, and robustness to changes in the test conditions, e.g. display resolutions. The main problem that impairs its wide acceptance is that the number of pairs to compare by subjects grows quadratically with the number of stimuli that must be considered. Usually, the paired comparison data obtained is fed into an aggregation model to obtain a final score for each degraded image and thus, not every comparison contributes equally to the final quality score. In the past years, several solutions that sample pairs (from all possible combinations) have been proposed, from random sampling to active sampling based on the past subjects' decisions. This paper introduces a novel sampling solution called \textbf{P}redictive \textbf{S}ampling for \textbf{P}airwise \textbf{C}omparison (PS-PC) which exploits the characteristics of the input data to make a prediction of which pairs should be evaluated by subjects. The proposed solution exploits popular machine learning techniques to select the most informative pairs for subjects to evaluate, while for the other remaining pairs, it predicts the subjects' preferences. The experimental results show that PS-PC is the best choice among the available sampling algorithms with higher performance for the same number of pairs. Moreover, since the choice of the pairs is done \emph{a priori} before the subjective test starts, the algorithm is not required to run during the test and thus much more simple to deploy in online crowdsourcing subjective tests.

相關內容

In neural audio signal processing, pitch conditioning has been used to enhance the performance of synthesizers. However, jointly training pitch estimators and synthesizers is a challenge when using standard audio-to-audio reconstruction loss, leading to reliance on external pitch trackers. To address this issue, we propose using a spectral loss function inspired by optimal transportation theory that minimizes the displacement of spectral energy. We validate this approach through an unsupervised autoencoding task that fits a harmonic template to harmonic signals. We jointly estimate the fundamental frequency and amplitudes of harmonics using a lightweight encoder and reconstruct the signals using a differentiable harmonic synthesizer. The proposed approach offers a promising direction for improving unsupervised parameter estimation in neural audio applications.

With the increasing importance of video data in real-world applications, there is a rising need for efficient object detection methods that utilize temporal information. While existing video object detection (VOD) techniques employ various strategies to address this challenge, they typically depend on locally adjacent frames or randomly sampled images within a clip. Although recent Transformer-based VOD methods have shown promising results, their reliance on multiple inputs and additional network complexity to incorporate temporal information limits their practical applicability. In this paper, we propose a novel approach to single image object detection, called Context Enhanced TRansformer (CETR), by incorporating temporal context into DETR using a newly designed memory module. To efficiently store temporal information, we construct a class-wise memory that collects contextual information across data. Additionally, we present a classification-based sampling technique to selectively utilize the relevant memory for the current image. In the testing, We introduce a test-time memory adaptation method that updates individual memory functions by considering the test distribution. Experiments with CityCam and ImageNet VID datasets exhibit the efficiency of the framework on various video systems. The project page and code will be made available at: //ku-cvlab.github.io/CETR.

The reconstruction of indoor scenes from multi-view RGB images is challenging due to the coexistence of flat and texture-less regions alongside delicate and fine-grained regions. Recent methods leverage neural radiance fields aided by predicted surface normal priors to recover the scene geometry. These methods excel in producing complete and smooth results for floor and wall areas. However, they struggle to capture complex surfaces with high-frequency structures due to the inadequate neural representation and the inaccurately predicted normal priors. This work aims to reconstruct high-fidelity surfaces with fine-grained details by addressing the above limitations. To improve the capacity of the implicit representation, we propose a hybrid architecture to represent low-frequency and high-frequency regions separately. To enhance the normal priors, we introduce a simple yet effective image sharpening and denoising technique, coupled with a network that estimates the pixel-wise uncertainty of the predicted surface normal vectors. Identifying such uncertainty can prevent our model from being misled by unreliable surface normal supervisions that hinder the accurate reconstruction of intricate geometries. Experiments on the benchmark datasets show that our method outperforms existing methods in terms of reconstruction quality. Furthermore, the proposed method also generalizes well to real-world indoor scenarios captured by our hand-held mobile phones. Our code is publicly available at: //github.com/yec22/Fine-Grained-Indoor-Recon.

In recent years, considerable attention has been devoted to the regularization models due to the presence of high-dimensional data in scientific research. Sparse support vector machine (SVM) are useful tools in high-dimensional data analysis, and they have been widely used in the area of econometrics. Nevertheless, the non-smoothness of objective functions and constraints present computational challenges for many existing solvers in the presence of ultra-high dimensional covariates. In this paper, we design efficient and parallelizable algorithms for solving sparse SVM problems with high dimensional data through feature space split. The proposed algorithm is based on the alternating direction method of multiplier (ADMM). We establish the rate of convergence of the proposed ADMM method and compare it with existing solvers in various high and ultra-high dimensional settings. The compatibility of the proposed algorithm with parallel computing can further alleviate the storage and scalability limitations of a single machine in large-scale data processing.

State-of-the-art techniques in weakly-supervised semantic segmentation (WSSS) using image-level labels exhibit severe performance degradation on driving scene datasets such as Cityscapes. To address this challenge, we develop a new WSSS framework tailored to driving scene datasets. Based on extensive analysis of dataset characteristics, we employ Contrastive Language-Image Pre-training (CLIP) as our baseline to obtain pseudo-masks. However, CLIP introduces two key challenges: (1) pseudo-masks from CLIP lack in representing small object classes, and (2) these masks contain notable noise. We propose solutions for each issue as follows. (1) We devise Global-Local View Training that seamlessly incorporates small-scale patches during model training, thereby enhancing the model's capability to handle small-sized yet critical objects in driving scenes (e.g., traffic light). (2) We introduce Consistency-Aware Region Balancing (CARB), a novel technique that discerns reliable and noisy regions through evaluating the consistency between CLIP masks and segmentation predictions. It prioritizes reliable pixels over noisy pixels via adaptive loss weighting. Notably, the proposed method achieves 51.8\% mIoU on the Cityscapes test dataset, showcasing its potential as a strong WSSS baseline on driving scene datasets. Experimental results on CamVid and WildDash2 demonstrate the effectiveness of our method across diverse datasets, even with small-scale datasets or visually challenging conditions. The code is available at //github.com/k0u-id/CARB.

The key challenge of image manipulation detection is how to learn generalizable features that are sensitive to manipulations in novel data, whilst specific to prevent false alarms on authentic images. Current research emphasizes the sensitivity, with the specificity overlooked. In this paper we address both aspects by multi-view feature learning and multi-scale supervision. By exploiting noise distribution and boundary artifact surrounding tampered regions, the former aims to learn semantic-agnostic and thus more generalizable features. The latter allows us to learn from authentic images which are nontrivial to be taken into account by current semantic segmentation network based methods. Our thoughts are realized by a new network which we term MVSS-Net. Extensive experiments on five benchmark sets justify the viability of MVSS-Net for both pixel-level and image-level manipulation detection.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.

Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this survey, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art graph neural networks into different categories. With a focus on graph convolutional networks, we review alternative architectures that have recently been developed; these learning paradigms include graph attention networks, graph autoencoders, graph generative networks, and graph spatial-temporal networks. We further discuss the applications of graph neural networks across various domains and summarize the open source codes and benchmarks of the existing algorithms on different learning tasks. Finally, we propose potential research directions in this fast-growing field.

The low resolution of objects of interest in aerial images makes pedestrian detection and action detection extremely challenging tasks. Furthermore, using deep convolutional neural networks to process large images can be demanding in terms of computational requirements. In order to alleviate these challenges, we propose a two-step, yes and no question answering framework to find specific individuals doing one or multiple specific actions in aerial images. First, a deep object detector, Single Shot Multibox Detector (SSD), is used to generate object proposals from small aerial images. Second, another deep network, is used to learn a latent common sub-space which associates the high resolution aerial imagery and the pedestrian action labels that are provided by the human-based sources

北京阿比特科技有限公司