亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Deep neural networks are increasingly used in a wide range of technologies and services, but remain highly susceptible to out-of-distribution (OOD) samples, that is, drawn from a different distribution than the original training set. A common approach to address this issue is to endow deep neural networks with the ability to detect OOD samples. Several benchmarks have been proposed to design and validate OOD detection techniques. However, many of them are based on far-OOD samples drawn from very different distributions, and thus lack the complexity needed to capture the nuances of real-world scenarios. In this work, we introduce a comprehensive benchmark for OOD detection, based on ImageNet and Places365, that assigns individual classes as in-distribution or out-of-distribution depending on the semantic similarity with the training set. Several techniques can be used to determine which classes should be considered in-distribution, yielding benchmarks with varying properties. Experimental results on different OOD detection techniques show how their measured efficacy depends on the selected benchmark and how confidence-based techniques may outperform classifier-based ones on near-OOD samples.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Current autonomous driving technologies are being rolled out in geo-fenced areas with well-defined operation conditions such as time of operation, area, weather conditions and road conditions. In this way, challenging conditions as adverse weather, slippery road or densely-populated city centers can be excluded. In order to lift the geo-fenced restriction and allow a more dynamic availability of autonomous driving functions, it is necessary for the vehicle to autonomously perform an environment condition assessment in real time to identify when the system cannot operate safely and either stop operation or require the resting passenger to take control. In particular, adverse-weather challenges are a fundamental limitation as sensor performance degenerates quickly, prohibiting the use of sensors such as cameras to locate and monitor road signs, pedestrians or other vehicles. To address this issue, we train a deep learning model to identify outdoor weather and dangerous road conditions, enabling a quick reaction to new situations and environments. We achieve this by introducing an improved taxonomy and label hierarchy for a state-of-the-art adverse-weather dataset, relabelling it with a novel semi-automated labeling pipeline. Using the novel proposed dataset and hierarchy, we train RECNet, a deep learning model for the classification of environment conditions from a single RGB frame. We outperform baseline models by relative 16% in F1- Score, while maintaining a real-time capable performance of 20 Hz.

Deep neural networks have useful applications in many different tasks, however their performance can be severely affected by changes in the data distribution. For example, in the biomedical field, their performance can be affected by changes in the data (different machines, populations) between training and test datasets. To ensure robustness and generalization to real-world scenarios, test-time adaptation has been recently studied as an approach to adjust models to a new data distribution during inference. Test-time batch normalization is a simple and popular method that achieved compelling performance on domain shift benchmarks. It is implemented by recalculating batch normalization statistics on test batches. Prior work has focused on analysis with test data that has the same label distribution as the training data. However, in many practical applications this technique is vulnerable to label distribution shifts, sometimes producing catastrophic failure. This presents a risk in applying test time adaptation methods in deployment. We propose to tackle this challenge by only selectively adapting channels in a deep network, minimizing drastic adaptation that is sensitive to label shifts. Our selection scheme is based on two principles that we empirically motivate: (1) later layers of networks are more sensitive to label shift (2) individual features can be sensitive to specific classes. We apply the proposed technique to three classification tasks, including CIFAR10-C, Imagenet-C, and diagnosis of fatty liver, where we explore both covariate and label distribution shifts. We find that our method allows to bring the benefits of TTA while significantly reducing the risk of failure common in other methods, while being robust to choice in hyperparameters.

To efficiently utilize the scarce wireless resource, the random access scheme has been attaining renewed interest primarily in supporting the sporadic traffic of a large number of devices encountered in the Internet of Things (IoT). In this paper we investigate the performance of slotted ALOHA -- a simple and practical random access scheme -- in connection with the grant-free random access protocol applied for user-centric cell-free massive MIMO. More specifically, we provide the expression of the sum-throughput under the assumptions of the capture capability owned by the centralized detector in the uplink. Further, a comparative study of user-centric cell-free massive MIMO with other types of networks is provided, which allows us to identify its potential and possible limitation. Our numerical simulations show that the user-centric cell-free massive MIMO has a good trade-off between performance and fronthaul load, especially at low activation probability regime.

Spiking neural networks (SNNs) are investigated as biologically inspired models of neural computation, distinguished by their computational capability and energy efficiency due to precise spiking times and sparse spikes with event-driven computation. A significant question is how SNNs can emulate human-like graph-based reasoning of concepts and relations, especially leveraging the temporal domain optimally. This paper reveals that SNNs, when amalgamated with synaptic delay and temporal coding, are proficient in executing (knowledge) graph reasoning. It is elucidated that spiking time can function as an additional dimension to encode relation properties via a neural-generalized path formulation. Empirical results highlight the efficacy of temporal delay in relation processing and showcase exemplary performance in diverse graph reasoning tasks. The spiking model is theoretically estimated to achieve $20\times$ energy savings compared to non-spiking counterparts, deepening insights into the capabilities and potential of biologically inspired SNNs for efficient reasoning. The code is available at //github.com/pkuxmq/GRSNN.

Despite the popularity of information measures in analysis of probabilistic systems, proper tools for their visualization are not common. This work develops a simple matrix representation of information transfer in sequential systems, termed information matrix (InfoMat). The simplicity of the InfoMat provides a new visual perspective on existing decomposition formulas of mutual information, and enables us to prove new relations between sequential information theoretic measures. We study various estimation schemes of the InfoMat, facilitating the visualization of information transfer in sequential datasets. By drawing a connection between visual patterns in the InfoMat and various dependence structures, we observe how information transfer evolves in the dataset. We then leverage this tool to visualize the effect of capacity-achieving coding schemes on the underlying exchange of information. We believe the InfoMat is applicable to any time-series task for a better understanding of the data at hand.

Multilayer networks are used to represent the interdependence between the relational data of individuals interacting with each other via different types of relationships. To study the information-theoretic phase transitions in detecting the presence of planted partition among the nodes of a multi-layer network with additional nodewise covariate information and diverging average degree, Ma and Nandy (2023) introduced Multi-Layer Contextual Stochastic Block Model. In this paper, we consider the problem of detecting planted partitions in the Multi-Layer Contextual Stochastic Block Model, when the average node degrees for each network is greater than $1$. We establish the sharp phase transition threshold for detecting the planted bi-partition. Above the phase-transition threshold testing the presence of a bi-partition is possible, whereas below the threshold no procedure to identify the planted bi-partition can perform better than random guessing. We further establish that the derived detection threshold coincides with the threshold for weak recovery of the partition and provide a quasi-polynomial time algorithm to estimate it.

Hyperproperties are commonly used in computer security to define information-flow policies and other requirements that reason about the relationship between multiple computations. In this paper, we study a novel class of hyperproperties where the individual computation paths are chosen by the strategic choices of a coalition of agents in a multi-agent system. We introduce HyperATL*, an extension of computation tree logic with path variables and strategy quantifiers. Our logic can express strategic hyperproperties, such as that the scheduler in a concurrent system has a strategy to avoid information leakage. HyperATL* is particularly useful to specify asynchronous hyperproperties, i.e., hyperproperties where the speed of the execution on the different computation paths depends on the choices of the scheduler. Unlike other recent logics for the specification of asynchronous hyperproperties, our logic is the first to admit decidable model checking for the full logic. We present a model checking algorithm for HyperATL* based on alternating automata, and show that our algorithm is asymptotically optimal by providing a matching lower bound. We have implemented a prototype model checker for a fragment of HyperATL*, able to check various security properties on small programs.

Ensembles over neural network weights trained from different random initialization, known as deep ensembles, achieve state-of-the-art accuracy and calibration. The recently introduced batch ensembles provide a drop-in replacement that is more parameter efficient. In this paper, we design ensembles not only over weights, but over hyperparameters to improve the state of the art in both settings. For best performance independent of budget, we propose hyper-deep ensembles, a simple procedure that involves a random search over different hyperparameters, themselves stratified across multiple random initializations. Its strong performance highlights the benefit of combining models with both weight and hyperparameter diversity. We further propose a parameter efficient version, hyper-batch ensembles, which builds on the layer structure of batch ensembles and self-tuning networks. The computational and memory costs of our method are notably lower than typical ensembles. On image classification tasks, with MLP, LeNet, and Wide ResNet 28-10 architectures, our methodology improves upon both deep and batch ensembles.

Graph neural networks (GNNs) have emerged as a powerful paradigm for embedding-based entity alignment due to their capability of identifying isomorphic subgraphs. However, in real knowledge graphs (KGs), the counterpart entities usually have non-isomorphic neighborhood structures, which easily causes GNNs to yield different representations for them. To tackle this problem, we propose a new KG alignment network, namely AliNet, aiming at mitigating the non-isomorphism of neighborhood structures in an end-to-end manner. As the direct neighbors of counterpart entities are usually dissimilar due to the schema heterogeneity, AliNet introduces distant neighbors to expand the overlap between their neighborhood structures. It employs an attention mechanism to highlight helpful distant neighbors and reduce noises. Then, it controls the aggregation of both direct and distant neighborhood information using a gating mechanism. We further propose a relation loss to refine entity representations. We perform thorough experiments with detailed ablation studies and analyses on five entity alignment datasets, demonstrating the effectiveness of AliNet.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司