We show how fragile stable matchings are in a decentralized one-to-one matching setting. The classical work of Roth and Vande Vate (1990) suggests simple decentralized dynamics in which randomly-chosen blocking pairs match successively. Such decentralized interactions guarantee convergence to a stable matching. Our first theorem shows that, under mild conditions, any unstable matching -- including a small perturbation of a stable matching -- can culminate in any stable matching through these dynamics. Our second theorem highlights another aspect of fragility: stabilization may take a long time. Even in markets with a unique stable matching, where the dynamics always converge to the same matching, decentralized interactions can require an exponentially long duration to converge. A small perturbation of a stable matching may lead the market away from stability and involve a sizable proportion of mismatched participants for extended periods. Our results hold for a broad class of dynamics.
Transform Dialect in MLIR provides operations that can be used to control transformation of the Intermediate Representation (IR) using a different portion of the IR. It refers to the IR being transformed as payload IR, and to the IR guiding the transformation as transform IR. The main use case for this dialect is orchestrating fine-grain transformations on individual IR objects (operations or values) or sets thereof. For example, it may involve finding loop-like operations with specific properties (e.g., large size) in the payload IR, applying loop tiling to those and only those operations, and then applying loop unrolling to the inner loops produced by the previous transformations. As such, it is not intended as a replacement for the pass infrastructure, nor for the pattern rewriting infrastructure. In the most common case, the transform IR will be processed and applied to the payload IR by a pass. Transformations expressed by the Transform dialect may be implemented using the pattern infrastructure or any other relevant MLIR component. The rest of this document explains the main concepts and usage scenario of the MLIR Transform Dialect combined with structured operations.
Ontology and knowledge graph matching systems are evaluated annually by the Ontology Alignment Evaluation Initiative (OAEI). More and more systems use machine learning-based approaches, including large language models. The training and validation datasets are usually determined by the system developer and often a subset of the reference alignments are used. This sampling is against the OAEI rules and makes a fair comparison impossible. Furthermore, those models are trained offline (a trained and optimized model is packaged into the matcher) and therefore the systems are specifically trained for those tasks. In this paper, we introduce a dataset that contains training, validation, and test sets for most of the OAEI tracks. Thus, online model learning (the systems must adapt to the given input alignment without human intervention) is made possible to enable a fair comparison for ML-based systems. We showcase the usefulness of the dataset by fine-tuning the confidence thresholds of popular systems.
Optimization Modulo Theories (OMT) has emerged as an important extension of the highly successful Satisfiability Modulo Theories (SMT) paradigm. The OMT problem requires solving an SMT problem with the restriction that the solution must be optimal with respect to a given objective function. We introduce a generalization of the OMT problem where, in particular, objective functions can range over partially ordered sets. We provide a formalization of and an abstract calculus for the generalized OMT problem and prove their key correctness properties. Generalized OMT extends previous work on OMT in several ways. First, in contrast to many current OMT solvers, our calculus is theory-agnostic, enabling the optimization of queries over any theories or combinations thereof. Second, our formalization unifies both single- and multi-objective optimization problems, allowing us to study them both in a single framework and facilitating the use of objective functions that are not supported by existing OMT approaches. Finally, our calculus is sufficiently general to fully capture a wide variety of current OMT approaches (each of which can be realized as a specific strategy for rule application in the calculus) and to support the exploration of new search strategies. Much like the original abstract DPLL(T) calculus for SMT, our Generalized OMT calculus is designed to establish a theoretical foundation for understanding and research and to serve as a framework for studying variations of and extensions to existing OMT methodologies.
While Nash equilibrium has emerged as the central game-theoretic solution concept, many important games contain several Nash equilibria and we must determine how to select between them in order to create real strategic agents. Several Nash equilibrium refinement concepts have been proposed and studied for sequential imperfect-information games, the most prominent being trembling-hand perfect equilibrium, quasi-perfect equilibrium, and recently one-sided quasi-perfect equilibrium. These concepts are robust to certain arbitrarily small mistakes, and are guaranteed to always exist; however, we argue that neither of these is the correct concept for developing strong agents in sequential games of imperfect information. We define a new equilibrium refinement concept for extensive-form games called observable perfect equilibrium in which the solution is robust over trembles in publicly-observable action probabilities (not necessarily over all action probabilities that may not be observable by opposing players). Observable perfect equilibrium correctly captures the assumption that the opponent is playing as rationally as possible given mistakes that have been observed (while previous solution concepts do not). We prove that observable perfect equilibrium is always guaranteed to exist, and demonstrate that it leads to a different solution than the prior extensive-form refinements in no-limit poker. We expect observable perfect equilibrium to be a useful equilibrium refinement concept for modeling many important imperfect-information games of interest in artificial intelligence.
We propose a test problem for Navier-Stokes solvers based on the flow around a cylinder. We choose a range of Reynolds numbers for which the flow is time-dependent but can be characterized as essentially two-dimensional. The test problem requires accurate resolution of chaotic dynamics over a long time interval. It also requires the use of a relatively large computational domain, part of which is curved, and it requires evaluation of derivatives of the solution and pressure on the curved boundary. We review the performance of different finite element methods for the proposed range of Reynolds numbers. These tests indicate that some of the most established methods do not capture the correct behavior.
Speculative Decoding is a widely used technique to speed up inference for Large Language Models (LLMs) without sacrificing quality. When performing inference, speculative decoding uses a smaller draft model to generate speculative tokens and then uses the target LLM to verify those draft tokens. The speedup provided by speculative decoding heavily depends on the choice of the draft model. In this work, we perform a detailed study comprising over 350 experiments with LLaMA-65B and OPT-66B using speculative decoding and delineate the factors that affect the performance gain provided by speculative decoding. Our experiments indicate that the performance of speculative decoding depends heavily on the latency of the draft model, and the draft model's capability in language modeling does not correlate strongly with its performance in speculative decoding. Based on these insights we explore a new design space for draft models and design hardware-efficient draft models for speculative decoding. Our newly designed draft model for LLaMA-65B can provide 60% higher throughput than existing draft models and can generalize further to the LLaMA-2 model family and supervised fine-tuned models.
Interactive Natural Language Processing (iNLP) has emerged as a novel paradigm within the field of NLP, aimed at addressing limitations in existing frameworks while aligning with the ultimate goals of artificial intelligence. This paradigm considers language models as agents capable of observing, acting, and receiving feedback iteratively from external entities. Specifically, language models in this context can: (1) interact with humans for better understanding and addressing user needs, personalizing responses, aligning with human values, and improving the overall user experience; (2) interact with knowledge bases for enriching language representations with factual knowledge, enhancing the contextual relevance of responses, and dynamically leveraging external information to generate more accurate and informed responses; (3) interact with models and tools for effectively decomposing and addressing complex tasks, leveraging specialized expertise for specific subtasks, and fostering the simulation of social behaviors; and (4) interact with environments for learning grounded representations of language, and effectively tackling embodied tasks such as reasoning, planning, and decision-making in response to environmental observations. This paper offers a comprehensive survey of iNLP, starting by proposing a unified definition and framework of the concept. We then provide a systematic classification of iNLP, dissecting its various components, including interactive objects, interaction interfaces, and interaction methods. We proceed to delve into the evaluation methodologies used in the field, explore its diverse applications, scrutinize its ethical and safety issues, and discuss prospective research directions. This survey serves as an entry point for researchers who are interested in this rapidly evolving area and offers a broad view of the current landscape and future trajectory of iNLP.
Graph Neural Networks (GNNs) draw their strength from explicitly modeling the topological information of structured data. However, existing GNNs suffer from limited capability in capturing the hierarchical graph representation which plays an important role in graph classification. In this paper, we innovatively propose hierarchical graph capsule network (HGCN) that can jointly learn node embeddings and extract graph hierarchies. Specifically, disentangled graph capsules are established by identifying heterogeneous factors underlying each node, such that their instantiation parameters represent different properties of the same entity. To learn the hierarchical representation, HGCN characterizes the part-whole relationship between lower-level capsules (part) and higher-level capsules (whole) by explicitly considering the structure information among the parts. Experimental studies demonstrate the effectiveness of HGCN and the contribution of each component.
Adversarial attack is a technique for deceiving Machine Learning (ML) models, which provides a way to evaluate the adversarial robustness. In practice, attack algorithms are artificially selected and tuned by human experts to break a ML system. However, manual selection of attackers tends to be sub-optimal, leading to a mistakenly assessment of model security. In this paper, a new procedure called Composite Adversarial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms and their hyper-parameters from a candidate pool of \textbf{32 base attackers}. We design a search space where attack policy is represented as an attacking sequence, i.e., the output of the previous attacker is used as the initialization input for successors. Multi-objective NSGA-II genetic algorithm is adopted for finding the strongest attack policy with minimum complexity. The experimental result shows CAA beats 10 top attackers on 11 diverse defenses with less elapsed time (\textbf{6 $\times$ faster than AutoAttack}), and achieves the new state-of-the-art on $l_{\infty}$, $l_{2}$ and unrestricted adversarial attacks.
We introduce an effective model to overcome the problem of mode collapse when training Generative Adversarial Networks (GAN). Firstly, we propose a new generator objective that finds it better to tackle mode collapse. And, we apply an independent Autoencoders (AE) to constrain the generator and consider its reconstructed samples as "real" samples to slow down the convergence of discriminator that enables to reduce the gradient vanishing problem and stabilize the model. Secondly, from mappings between latent and data spaces provided by AE, we further regularize AE by the relative distance between the latent and data samples to explicitly prevent the generator falling into mode collapse setting. This idea comes when we find a new way to visualize the mode collapse on MNIST dataset. To the best of our knowledge, our method is the first to propose and apply successfully the relative distance of latent and data samples for stabilizing GAN. Thirdly, our proposed model, namely Generative Adversarial Autoencoder Networks (GAAN), is stable and has suffered from neither gradient vanishing nor mode collapse issues, as empirically demonstrated on synthetic, MNIST, MNIST-1K, CelebA and CIFAR-10 datasets. Experimental results show that our method can approximate well multi-modal distribution and achieve better results than state-of-the-art methods on these benchmark datasets. Our model implementation is published here: //github.com/tntrung/gaan