亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Accessibility of research data is critical for advances in many research fields, but textual data often cannot be shared due to the personal and sensitive information which it contains, e.g names or political opinions. General Data Protection Regulation (GDPR) suggests pseudonymization as a solution to secure open access to research data, but we need to learn more about pseudonymization as an approach before adopting it for manipulation of research data. This paper outlines a research agenda within pseudonymization, namely need of studies into the effects of pseudonymization on unstructured data in relation to e.g. readability and language assessment, as well as the effectiveness of pseudonymization as a way of protecting writer identity, while also exploring different ways of developing context-sensitive algorithms for detection, labelling and replacement of personal information in unstructured data. The recently granted project on pseudonymization Grandma Karl is 27 years old addresses exactly those challenges.

相關內容

With the popularization of the internet, smartphones and social media, information is being spread quickly and easily way, which implies bigger traffic of information in the world, but there is a problem that is harming society with the dissemination of fake news. With a bigger flow of information, some people are trying to disseminate deceptive information and fake news. The automatic detection of fake news is a challenging task because to obtain a good result is necessary to deal with linguistics problems, especially when we are dealing with languages that not have been comprehensively studied yet, besides that, some techniques can help to reach a good result when we are dealing with text data, although, the motivation of detecting this deceptive information it is in the fact that the people need to know which information is true and trustful and which one is not. In this work, we present the effect the pre-processing methods such as lemmatization and stemming have on fake news classification, for that we designed some classifier models applying different pre-processing techniques. The results show that the pre-processing step is important to obtain betters results, the stemming and lemmatization techniques are interesting methods and need to be more studied to develop techniques focused on the Portuguese language so we can reach better results.

We describe an architecture for a decentralised data market for applications in which agents are incentivised to collaborate to crowd-source their data. The architecture is designed to reward data that furthers the market's collective goal, and distributes reward fairly to all those that contribute with their data. We show that the architecture is resilient to Sybil, wormhole, and data poisoning attacks. In order to evaluate the resilience of the architecture, we characterise its breakdown points for various adversarial threat models in an automotive use case.

State-of-the-art machine learning models can be vulnerable to very small input perturbations that are adversarially constructed. Adversarial training is an effective approach to defend against it. Formulated as a min-max problem, it searches for the best solution when the training data were corrupted by the worst-case attacks. Linear models are among the simple models where vulnerabilities can be observed and are the focus of our study. In this case, adversarial training leads to a convex optimization problem which can be formulated as the minimization of a finite sum. We provide a comparative analysis between the solution of adversarial training in linear regression and other regularization methods. Our main findings are that: (A) Adversarial training yields the minimum-norm interpolating solution in the overparameterized regime (more parameters than data), as long as the maximum disturbance radius is smaller than a threshold. And, conversely, the minimum-norm interpolator is the solution to adversarial training with a given radius. (B) Adversarial training can be equivalent to parameter shrinking methods (ridge regression and Lasso). This happens in the underparametrized region, for an appropriate choice of adversarial radius and zero-mean symmetrically distributed covariates. (C) For $\ell_\infty$-adversarial training -- as in square-root Lasso -- the choice of adversarial radius for optimal bounds does not depend on the additive noise variance. We confirm our theoretical findings with numerical examples.

With the recent advances in social media, the use of NLP techniques in social media data analysis has become an emerging research direction. Business organizations can particularly benefit from such an analysis of social media discourse, providing an external perspective on consumer behavior. Some of the NLP applications such as intent detection, sentiment classification, text summarization can help FinTech organizations to utilize the social media language data to find useful external insights and can be further utilized for downstream NLP tasks. Particularly, a summary which highlights the intents and sentiments of the users can be very useful for these organizations to get an external perspective. This external perspective can help organizations to better manage their products, offers, promotional campaigns, etc. However, certain challenges, such as a lack of labeled domain-specific datasets impede further exploration of these tasks in the FinTech domain. To overcome these challenges, we design an unsupervised phrase-based summary generation from social media data, using 'Action-Object' pairs (intent phrases). We evaluated the proposed method with other key-phrase based summary generation methods in the direction of contextual information of various Reddit discussion threads, available in the different summaries. We introduce certain "Context Metrics" such as the number of Unique words, Action-Object pairs, and Noun chunks to evaluate the contextual information retrieved from the source text in these phrase-based summaries. We demonstrate that our methods significantly outperform the baseline on these metrics, thus providing a qualitative and quantitative measure of their efficacy. Proposed framework has been leveraged as a web utility portal hosted within Amex.

The elusive nature of gradient-based optimization in neural networks is tied to their loss landscape geometry, which is poorly understood. However recent work has brought solid evidence that there is essentially no loss barrier between the local solutions of gradient descent, once accounting for weight-permutations that leave the network's computation unchanged. This raises questions for approximate inference in Bayesian neural networks (BNNs), where we are interested in marginalizing over multiple points in the loss landscape. In this work, we first extend the formalism of marginalized loss barrier and solution interpolation to BNNs, before proposing a matching algorithm to search for linearly connected solutions. This is achieved by aligning the distributions of two independent approximate Bayesian solutions with respect to permutation matrices. We build on the results of Ainsworth et al. (2023), reframing the problem as a combinatorial optimization one, using an approximation to the sum of bilinear assignment problem. We then experiment on a variety of architectures and datasets, finding nearly zero marginalized loss barriers for linearly connected solutions.

We study the effect of using weaker forms of data-fidelity terms in generalized Tikhonov regularization accounting for model uncertainties. We show that relaxed data-consistency conditions can be beneficial for integrating available prior knowledge.

Supervised neural approaches are hindered by their dependence on large, meticulously annotated datasets, a requirement that is particularly cumbersome for sequential tasks. The quality of annotations tends to deteriorate with the transition from expert-based to crowd-sourced labelling. To address these challenges, we present \textbf{CAMELL} (Confidence-based Acquisition Model for Efficient self-supervised active Learning with Label validation), a pool-based active learning framework tailored for sequential multi-output problems. CAMELL possesses three core features: (1) it requires expert annotators to label only a fraction of a chosen sequence, (2) it facilitates self-supervision for the remainder of the sequence, and (3) it employs a label validation mechanism to prevent erroneous labels from contaminating the dataset and harming model performance. We evaluate CAMELL on sequential tasks, with a special emphasis on dialogue belief tracking, a task plagued by the constraints of limited and noisy datasets. Our experiments demonstrate that CAMELL outperforms the baselines in terms of efficiency. Furthermore, the data corrections suggested by our method contribute to an overall improvement in the quality of the resulting datasets.

We hypothesize that due to the greedy nature of learning in multi-modal deep neural networks, these models tend to rely on just one modality while under-fitting the other modalities. Such behavior is counter-intuitive and hurts the models' generalization, as we observe empirically. To estimate the model's dependence on each modality, we compute the gain on the accuracy when the model has access to it in addition to another modality. We refer to this gain as the conditional utilization rate. In the experiments, we consistently observe an imbalance in conditional utilization rates between modalities, across multiple tasks and architectures. Since conditional utilization rate cannot be computed efficiently during training, we introduce a proxy for it based on the pace at which the model learns from each modality, which we refer to as the conditional learning speed. We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning. The proposed algorithm improves the model's generalization on three datasets: Colored MNIST, Princeton ModelNet40, and NVIDIA Dynamic Hand Gesture.

A key requirement for the success of supervised deep learning is a large labeled dataset - a condition that is difficult to meet in medical image analysis. Self-supervised learning (SSL) can help in this regard by providing a strategy to pre-train a neural network with unlabeled data, followed by fine-tuning for a downstream task with limited annotations. Contrastive learning, a particular variant of SSL, is a powerful technique for learning image-level representations. In this work, we propose strategies for extending the contrastive learning framework for segmentation of volumetric medical images in the semi-supervised setting with limited annotations, by leveraging domain-specific and problem-specific cues. Specifically, we propose (1) novel contrasting strategies that leverage structural similarity across volumetric medical images (domain-specific cue) and (2) a local version of the contrastive loss to learn distinctive representations of local regions that are useful for per-pixel segmentation (problem-specific cue). We carry out an extensive evaluation on three Magnetic Resonance Imaging (MRI) datasets. In the limited annotation setting, the proposed method yields substantial improvements compared to other self-supervision and semi-supervised learning techniques. When combined with a simple data augmentation technique, the proposed method reaches within 8% of benchmark performance using only two labeled MRI volumes for training, corresponding to only 4% (for ACDC) of the training data used to train the benchmark.

Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

北京阿比特科技有限公司