亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Robotic Process Automation (RPA) has emerged as a game-changing technology in data extraction, revolutionizing the way organizations process and analyze large volumes of documents such as invoices, purchase orders, and payment advices. This study investigates the use of RPA for structured data extraction and evaluates its advantages over manual processes. By comparing human-performed tasks with those executed by RPA software bots, we assess efficiency and accuracy in data extraction from invoices, focusing on the effectiveness of the RPA system. Through four distinct scenarios involving varying numbers of invoices, we measure efficiency in terms of time and effort required for task completion, as well as accuracy by comparing error rates between manual and RPA processes. Our findings highlight the significant efficiency gains achieved by RPA, with bots completing tasks in significantly less time compared to manual efforts across all cases. Moreover, the RPA system consistently achieves perfect accuracy, mitigating the risk of errors and enhancing process reliability. These results underscore the transformative potential of RPA in optimizing operational efficiency, reducing human labor costs, and improving overall business performance.

相關內容

Speech emotion recognition (SER) is crucial for enhancing affective computing and enriching the domain of human-computer interaction. However, the main challenge in SER lies in selecting relevant feature representations from speech signals with lower computational costs. In this paper, we propose a lightweight SER architecture that integrates attention-based local feature blocks (ALFBs) to capture high-level relevant feature vectors from speech signals. We also incorporate a global feature block (GFB) technique to capture sequential, global information and long-term dependencies in speech signals. By aggregating attention-based local and global contextual feature vectors, our model effectively captures the internal correlation between salient features that reflect complex human emotional cues. To evaluate our approach, we extracted four types of spectral features from speech audio samples: mel-frequency cepstral coefficients, mel-spectrogram, root mean square value, and zero-crossing rate. Through a 5-fold cross-validation strategy, we tested the proposed method on five multi-lingual standard benchmark datasets: TESS, RAVDESS, BanglaSER, SUBESCO, and Emo-DB, and obtained a mean accuracy of 99.65%, 94.88%, 98.12%, 97.94%, and 97.19% respectively. The results indicate that our model achieves state-of-the-art (SOTA) performance compared to most existing methods.

The Extended Crosswise Model is a popular randomized response design that employs a sensitive and a randomized innocuous statement, and asks respondents if one of these statements is true, or that none or both are true. The model has a degree of freedom to test for response biases, but is unable to detect random answering. In this paper, we propose two new methods to indirectly estimate and correct for random answering. One method uses a non-sensitive control statement and a quasi-randomized innocuous statement to which both answers are known to estimate the proportion of random respondents. The other method assigns less weight in the estimation procedure to respondents who complete the survey in an unrealistically short time. For four surveys among elite athletes, we use these methods to correct the prevalence estimates of doping use for random answering.

Video summarization aims to eliminate visual redundancy while retaining key parts of video to construct concise and comprehensive synopses. Most existing methods use discriminative models to predict the importance scores of video frames. However, these methods are susceptible to annotation inconsistency caused by the inherent subjectivity of different annotators when annotating the same video. In this paper, we introduce a generative framework for video summarization that learns how to generate summaries from a probability distribution perspective, effectively reducing the interference of subjective annotation noise. Specifically, we propose a novel diffusion summarization method based on the Denoising Diffusion Probabilistic Model (DDPM), which learns the probability distribution of training data through noise prediction, and generates summaries by iterative denoising. Our method is more resistant to subjective annotation noise, and is less prone to overfitting the training data than discriminative methods, with strong generalization ability. Moreover, to facilitate training DDPM with limited data, we employ an unsupervised video summarization model to implement the earlier denoising process. Extensive experiments on various datasets (TVSum, SumMe, and FPVSum) demonstrate the effectiveness of our method.

Bayesian Optimisation (BO) is a state-of-the-art global optimisation technique for black-box problems where derivative information is unavailable, and sample efficiency is crucial. However, improving the general scalability of BO has proved challenging. Here, we explore Latent Space Bayesian Optimisation (LSBO), that applies dimensionality reduction to perform BO in a reduced-dimensional subspace. While early LSBO methods used (linear) random projections (Wang et al., 2013), we employ Variational Autoencoders (VAEs) to manage more complex data structures and general DR tasks. Building on Grosnit et. al. (2021), we analyse the VAE-based LSBO framework, focusing on VAE retraining and deep metric loss. We suggest a few key corrections in their implementation, originally designed for tasks such as molecule generation, and reformulate the algorithm for broader optimisation purposes. Our numerical results show that structured latent manifolds improve BO performance. Additionally, we examine the use of the Mat\'{e}rn-$\frac{5}{2}$ kernel for Gaussian Processes in this LSBO context. We also integrate Sequential Domain Reduction (SDR), a standard global optimization efficiency strategy, into BO. SDR is included in a GPU-based environment using \textit{BoTorch}, both in the original and VAE-generated latent spaces, marking the first application of SDR within LSBO.

Probabilistic Circuits (PCs) are a unified framework for tractable probabilistic models that support efficient computation of various probabilistic queries (e.g., marginal probabilities). One key challenge is to scale PCs to model large and high-dimensional real-world datasets: we observe that as the number of parameters in PCs increases, their performance immediately plateaus. This phenomenon suggests that the existing optimizers fail to exploit the full expressive power of large PCs. We propose to overcome such bottleneck by latent variable distillation: we leverage the less tractable but more expressive deep generative models to provide extra supervision over the latent variables of PCs. Specifically, we extract information from Transformer-based generative models to assign values to latent variables of PCs, providing guidance to PC optimizers. Experiments on both image and language modeling benchmarks (e.g., ImageNet and WikiText-2) show that latent variable distillation substantially boosts the performance of large PCs compared to their counterparts without latent variable distillation. In particular, on the image modeling benchmarks, PCs achieve competitive performance against some of the widely-used deep generative models, including variational autoencoders and flow-based models, opening up new avenues for tractable generative modeling. Our code can be found at //github.com/UCLA-StarAI/LVD.

Graph neural networks (GNNs) is widely used to learn a powerful representation of graph-structured data. Recent work demonstrates that transferring knowledge from self-supervised tasks to downstream tasks could further improve graph representation. However, there is an inherent gap between self-supervised tasks and downstream tasks in terms of optimization objective and training data. Conventional pre-training methods may be not effective enough on knowledge transfer since they do not make any adaptation for downstream tasks. To solve such problems, we propose a new transfer learning paradigm on GNNs which could effectively leverage self-supervised tasks as auxiliary tasks to help the target task. Our methods would adaptively select and combine different auxiliary tasks with the target task in the fine-tuning stage. We design an adaptive auxiliary loss weighting model to learn the weights of auxiliary tasks by quantifying the consistency between auxiliary tasks and the target task. In addition, we learn the weighting model through meta-learning. Our methods can be applied to various transfer learning approaches, it performs well not only in multi-task learning but also in pre-training and fine-tuning. Comprehensive experiments on multiple downstream tasks demonstrate that the proposed methods can effectively combine auxiliary tasks with the target task and significantly improve the performance compared to state-of-the-art methods.

How can we estimate the importance of nodes in a knowledge graph (KG)? A KG is a multi-relational graph that has proven valuable for many tasks including question answering and semantic search. In this paper, we present GENI, a method for tackling the problem of estimating node importance in KGs, which enables several downstream applications such as item recommendation and resource allocation. While a number of approaches have been developed to address this problem for general graphs, they do not fully utilize information available in KGs, or lack flexibility needed to model complex relationship between entities and their importance. To address these limitations, we explore supervised machine learning algorithms. In particular, building upon recent advancement of graph neural networks (GNNs), we develop GENI, a GNN-based method designed to deal with distinctive challenges involved with predicting node importance in KGs. Our method performs an aggregation of importance scores instead of aggregating node embeddings via predicate-aware attention mechanism and flexible centrality adjustment. In our evaluation of GENI and existing methods on predicting node importance in real-world KGs with different characteristics, GENI achieves 5-17% higher NDCG@100 than the state of the art.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.

Recommender System (RS) is a hot area where artificial intelligence (AI) techniques can be effectively applied to improve performance. Since the well-known Netflix Challenge, collaborative filtering (CF) has become the most popular and effective recommendation method. Despite their success in CF, various AI techniques still have to face the data sparsity and cold start problems. Previous works tried to solve these two problems by utilizing auxiliary information, such as social connections among users and meta-data of items. However, they process different types of information separately, leading to information loss. In this work, we propose to utilize Heterogeneous Information Network (HIN), which is a natural and general representation of different types of data, to enhance CF-based recommending methods. HIN-based recommender systems face two problems: how to represent high-level semantics for recommendation and how to fuse the heterogeneous information to recommend. To address these problems, we propose to applying meta-graph to HIN-based RS and solve the information fusion problem with a "matrix factorization (MF) + factorization machine (FM)" framework. For the "MF" part, we obtain user-item similarity matrices from each meta-graph and adopt low-rank matrix approximation to get latent features for both users and items. For the "FM" part, we propose to apply FM with Group lasso (FMG) on the obtained features to simultaneously predict missing ratings and select useful meta-graphs. Experimental results on two large real-world datasets, i.e., Amazon and Yelp, show that our proposed approach is better than that of the state-of-the-art FM and other HIN-based recommending methods.

北京阿比特科技有限公司