Screening for any of the Autism Spectrum Disorders is a complicated process often involving a hybrid of behavioural observations and questionnaire based tests. Typically carried out in a controlled setting, this process requires trained clinicians or psychiatrists for such assessments. Riding on the wave of technical advancement in mobile platforms, several attempts have been made at incorporating such assessments on mobile and tablet devices. In this paper we analyse videos generated using one such screening test. This paper reports the first use of the efficacy of using the observer's distance from the display screen while administering a sensory sensitivity test as a behavioural marker for autism for children aged 2-7 years The potential for using a test such as this in casual home settings is promising.
Atomistic simulations using accurate energy functions can provide molecular-level insight into functional motions of molecules in the gas- and in the condensed phase. Together with recently developed and currently pursued efforts in integrating and combining this with machine learning techniques provides a unique opportunity to bring such dynamics simulations closer to reality. This perspective delineates the present status of the field from efforts of others in the field and some of your own work and discusses open questions and future prospects.
With the growing technological advances in autonomous driving, the transport industry and research community seek to determine the impact that autonomous vehicles (AV) will have on consumers, as well as identify the different factors that will influence their use. Most of the research performed so far relies on laboratory-controlled conditions using driving simulators, as they offer a safe environment for testing advanced driving assistance systems (ADAS). In this study we analyze the behavior of drivers that are placed in control of an automated vehicle in a real life driving environment. The vehicle is equipped with advanced autonomy, making driver control of the vehicle unnecessary in many scenarios, although a driver take over is possible and sometimes required. In doing so, we aim to determine the impact of such a system on the driver and their driving performance. To this end road users' behavior from naturalistic driving data is analyzed focusing on awareness and diagnosis of the road situation. Results showed that the road features determined the level of visual attention and trust in the automation. They also showed that the activities performed during the automation affected the reaction time to take over the control of the vehicle.
Simulators are an essential tool for behavioural and interaction research on driving, due to the safety, cost, and experimental control issues of on-road driving experiments. The most advanced simulators use expensive 360 degree projections systems to ensure visual fidelity, full field of view, and immersion. However, similar visual fidelity can be achieved affordably using a virtual reality (VR) based visual interface. We present DReyeVR, an open-source VR based driving simulator platform designed with behavioural and interaction research priorities in mind. DReyeVR (read "driver") is based on Unreal Engine and the CARLA autonomous vehicle simulator and has features such as eye tracking, a functional driving heads-up display (HUD) and vehicle audio, custom definable routes and traffic scenarios, experimental logging, replay capabilities, and compatibility with ROS. We describe the hardware required to deploy this simulator for under $5000$ USD, much cheaper than commercially available simulators. Finally, we describe how DReyeVR may be leveraged to answer an interaction research question in an example scenario.
This paper studies how global dynamics and knowledge of high-level features can inform decision-making for robots in flow-like environments. Specifically, we investigate how coherent sets, an environmental feature found in these environments, inform robot awareness within these scenarios. The proposed approach is an online environmental feature generator which can be used for robot reasoning. We compute coherent sets online with techniques from machine learning and design frameworks for robot behavior that leverage coherent set features. We demonstrate the effectiveness of online methods over offline methods. Notably, we apply these online methods for robot monitoring of pedestrian behaviors and robot navigation through water. Environmental features such as coherent sets provide rich context to robots for smarter, more efficient behavior.
The Internet of Behaviors (IoB) puts human behavior at the core of engineering intelligent connected systems. IoB links the digital world to human behavior to establish human-driven design, development, and adaptation processes. This paper defines the novel concept by an IoB model based on a collective effort interacting with software engineers, human-computer interaction scientists, social scientists, and cognitive science communities. The model for IoB is created based on an exploratory study that synthesizes state-of-the-art analysis and experts interviews. The architecture of a real industry 4.0 manufacturing infrastructure helps to explain the IoB model and it's application. The conceptual model was used to successfully implement a socio-technical infrastructure for a crowd monitoring and queue management system for the Uffizi Galleries, Florence, Italy. The experiment, which started in the fall of 2016 and was operational in the fall of 2018, used a data-driven approach to feed the system with real-time sensory data. It also incorporated prediction models on visitors' mobility behavior. The system's main objective was to capture human behavior, model it, and build a mechanism that considers changes, adapts in real-time, and continuously learns from repetitive behaviors. In addition to the conceptual model and the real-life evaluation, this paper provides recommendations from experts and gives future directions for IoB to become a significant technological advancement in the coming few years.
Simulators are an essential tool for behavioural and interaction research on driving, due to the safety, cost, and experimental control issues of on-road driving experiments. The most advanced simulators use expensive 360 degree projections systems to ensure visual fidelity, full field of view, and immersion. However, similar visual fidelity can be achieved affordably using a virtual reality (VR) based visual interface. We present DReyeVR, an open-source VR based driving simulator platform designed with behavioural and interaction research priorities in mind. DReyeVR (read ``driver'') is based on Unreal Engine and the CARLA autonomous vehicle simulator and has features such as eye tracking, a functional driving heads-up display (HUD) and vehicle audio, custom definable routes and traffic scenarios, experimental logging, replay capabilities, and compatibility with ROS. We describe the hardware required to deploy this simulator for under $5000$ USD, much cheaper than commercially available simulators. Finally, we describe how DReyeVR may be leveraged to answer an interaction research question in an example scenario.
Artificial Intelligence (AI) is envisioned to play a pivotal role in empowering intelligent, adaptive and autonomous security management in 5G and beyond networks, thanks to its potential to uncover hidden patterns from a large set of time-varying multi-dimensional data, and deliver faster and accurate decisions. Unfortunately, AI's capabilities and vulnerabilities make it a double-edged sword that may jeopardize the security of future networks. This paper sheds light on how AI may impact the security of 5G and its successive from its posture of defender, offender or victim, and recommends potential defenses to safeguard from malevolent AI while pointing out their limitations and adoption challenges.
Click-through rate (CTR) estimation plays as a core function module in various personalized online services, including online advertising, recommender systems, and web search etc. From 2015, the success of deep learning started to benefit CTR estimation performance and now deep CTR models have been widely applied in many industrial platforms. In this survey, we provide a comprehensive review of deep learning models for CTR estimation tasks. First, we take a review of the transfer from shallow to deep CTR models and explain why going deep is a necessary trend of development. Second, we concentrate on explicit feature interaction learning modules of deep CTR models. Then, as an important perspective on large platforms with abundant user histories, deep behavior models are discussed. Moreover, the recently emerged automated methods for deep CTR architecture design are presented. Finally, we summarize the survey and discuss the future prospects of this field.
Click-through rate (CTR) prediction is one of the fundamental tasks for e-commerce search engines. As search becomes more personalized, it is necessary to capture the user interest from rich behavior data. Existing user behavior modeling algorithms develop different attention mechanisms to emphasize query-relevant behaviors and suppress irrelevant ones. Despite being extensively studied, these attentions still suffer from two limitations. First, conventional attentions mostly limit the attention field only to a single user's behaviors, which is not suitable in e-commerce where users often hunt for new demands that are irrelevant to any historical behaviors. Second, these attentions are usually biased towards frequent behaviors, which is unreasonable since high frequency does not necessarily indicate great importance. To tackle the two limitations, we propose a novel attention mechanism, termed Kalman Filtering Attention (KFAtt), that considers the weighted pooling in attention as a maximum a posteriori (MAP) estimation. By incorporating a priori, KFAtt resorts to global statistics when few user behaviors are relevant. Moreover, a frequency capping mechanism is incorporated to correct the bias towards frequent behaviors. Offline experiments on both benchmark and a 10 billion scale real production dataset, together with an Online A/B test, show that KFAtt outperforms all compared state-of-the-arts. KFAtt has been deployed in the ranking system of a leading e commerce website, serving the main traffic of hundreds of millions of active users everyday.
For an autonomous agent to fulfill a wide range of user-specified goals at test time, it must be able to learn broadly applicable and general-purpose skill repertoires. Furthermore, to provide the requisite level of generality, these skills must handle raw sensory input such as images. In this paper, we propose an algorithm that acquires such general-purpose skills by combining unsupervised representation learning and reinforcement learning of goal-conditioned policies. Since the particular goals that might be required at test-time are not known in advance, the agent performs a self-supervised "practice" phase where it imagines goals and attempts to achieve them. We learn a visual representation with three distinct purposes: sampling goals for self-supervised practice, providing a structured transformation of raw sensory inputs, and computing a reward signal for goal reaching. We also propose a retroactive goal relabeling scheme to further improve the sample-efficiency of our method. Our off-policy algorithm is efficient enough to learn policies that operate on raw image observations and goals for a real-world robotic system, and substantially outperforms prior techniques.