亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

I consider the natural infinitary variations of the games Wordle and Mastermind, as well as their game-theoretic variations Absurdle and Madstermind, considering these games with infinitely long words and infinite color sequences and allowing transfinite game play. For each game, a secret codeword is hidden, which the codebreaker attempts to discover by making a series of guesses and receiving feedback as to their accuracy. In Wordle with words of any size from a finite alphabet of $n$ letters, including infinite words or even uncountable words, the codebreaker can nevertheless always win in $n$ steps. Meanwhile, the mastermind number, defined as the smallest winning set of guesses in infinite Mastermind for sequences of length $\omega$ over a countable set of colors without duplication, is uncountable, but the exact value turns out to be independent of ZFC, for it is provably equal to the eventually different number $\frak{d}({\neq^*})$, which is the same as the covering number of the meager ideal $\text{cov}(\mathcal{M})$. I thus place all the various mastermind numbers, defined for the natural variations of the game, into the hierarchy of cardinal characteristics of the continuum.

相關內容

In typed functional languages, one can typically only manipulate data in a type-safe manner if it first has been deserialised into an in-memory tree represented as a graph of nodes-as-structs and subterms-as-pointers. We demonstrate how we can use QTT as implemented in \idris{} to define a small universe of serialised datatypes, and provide generic programs allowing users to process values stored contiguously in buffers. Our approach allows implementors to prove the full functional correctness by construction of the IO functions processing the data stored in the buffer.

We present a relational representation of odd Sugihara chains. The elements of the algebra are represented as weakening relations over a particular poset which consists of two densely embedded copies of the rationals. Our construction mimics that of Maddux (2010) where a relational representation of the even Sugihara chains is given. An order automorphism between the two copies of the rationals is the key to ensuring that the identity element of the monoid is fixed by the involution.

The training and generalization dynamics of the Transformer's core mechanism, namely the Attention mechanism, remain under-explored. Besides, existing analyses primarily focus on single-head attention. Inspired by the demonstrated benefits of overparameterization when training fully-connected networks, we investigate the potential optimization and generalization advantages of using multiple attention heads. Towards this goal, we derive convergence and generalization guarantees for gradient-descent training of a single-layer multi-head self-attention model, under a suitable realizability condition on the data. We then establish primitive conditions on the initialization that ensure realizability holds. Finally, we demonstrate that these conditions are satisfied for a simple tokenized-mixture model. We expect the analysis can be extended to various data-model and architecture variations.

Linear temporal logic (LTL) and omega-regular objectives -- a superset of LTL -- have seen recent use as a way to express non-Markovian objectives in reinforcement learning. We introduce a model-based probably approximately correct (PAC) learning algorithm for omega-regular objectives in Markov decision processes. Unlike prior approaches, our algorithm learns from sampled trajectories of the system and does not require prior knowledge of the system's topology.

Deep networks typically learn concepts via classifiers, which involves setting up a model and training it via gradient descent to fit the concept-labeled data. We will argue instead that learning a concept could be done by looking at its moment statistics matrix to generate a concrete representation or signature of that concept. These signatures can be used to discover structure across the set of concepts and could recursively produce higher-level concepts by learning this structure from those signatures. When the concepts are `intersected', signatures of the concepts can be used to find a common theme across a number of related `intersected' concepts. This process could be used to keep a dictionary of concepts so that inputs could correctly identify and be routed to the set of concepts involved in the (latent) generation of the input.

We provide a variety of lower bounds for the well-known shortcut set problem: how much can one decrease the diameter of a directed graph on $n$ vertices and $m$ edges by adding $O(n)$ or $O(m)$ of shortcuts from the transitive closure of the graph. Our results are based on a vast simplification of the recent construction of Bodwin and Hoppenworth [FOCS 2023] which was used to show an $\widetilde{\Omega}(n^{1/4})$ lower bound for the $O(n)$-sized shortcut set problem. We highlight that our simplification completely removes the use of the convex sets by B\'ar\'any and Larman [Math. Ann. 1998] used in all previous lower bound constructions. Our simplification also removes the need for randomness and further removes some log factors. This allows us to generalize the construction to higher dimensions, which in turn can be used to show the following results. For $O(m)$-sized shortcut sets, we show an $\Omega(n^{1/5})$ lower bound, improving on the previous best $\Omega(n^{1/8})$ lower bound. For all $\varepsilon > 0$, we show that there exists a $\delta > 0$ such that there are $n$-vertex $O(n)$-edge graphs $G$ where adding any shortcut set of size $O(n^{2-\varepsilon})$ keeps the diameter of $G$ at $\Omega(n^\delta)$. This improves the sparsity of the constructed graph compared to a known similar result by Hesse [SODA 2003]. We also consider the sourcewise setting for shortcut sets: given a graph $G=(V,E)$, a set $S\subseteq V$, how much can we decrease the sourcewise diameter of $G$, $\max_{(s, v) \in S \times V, \text{dist}(s, v) < \infty} \text{dist}(s,v)$ by adding a set of edges $H$ from the transitive closure of $G$? We show that for any integer $d \ge 2$, there exists a graph $G=(V, E)$ on $n$ vertices and $S \subseteq V$ with $|S| = \widetilde{\Theta}(n^{3/(d+3)})$, such that when adding $O(n)$ or $O(m)$ shortcuts, the sourcewise diameter is $\widetilde{\Omega}(|S|^{1/3})$.

The Linear Model of Co-regionalization (LMC) is a very general model of multitask gaussian process for regression or classification. While its expressivity and conceptual simplicity are appealing, naive implementations have cubic complexity in the number of datapoints and number of tasks, making approximations mandatory for most applications. However, recent work has shown that under some conditions the latent processes of the model can be decoupled, leading to a complexity that is only linear in the number of said processes. We here extend these results, showing from the most general assumptions that the only condition necessary to an efficient exact computation of the LMC is a mild hypothesis on the noise model. We introduce a full parametrization of the resulting \emph{projected LMC} model, and an expression of the marginal likelihood enabling efficient optimization. We perform a parametric study on synthetic data to show the excellent performance of our approach, compared to an unrestricted exact LMC and approximations of the latter. Overall, the projected LMC appears as a credible and simpler alternative to state-of-the art models, which greatly facilitates some computations such as leave-one-out cross-validation and fantasization.

Translation-based AMR parsers have recently gained popularity due to their simplicity and effectiveness. They predict linearized graphs as free texts, avoiding explicit structure modeling. However, this simplicity neglects structural locality in AMR graphs and introduces unnecessary tokens to represent coreferences. In this paper, we introduce new target forms of AMR parsing and a novel model, CHAP, which is equipped with causal hierarchical attention and the pointer mechanism, enabling the integration of structures into the Transformer decoder. We empirically explore various alternative modeling options. Experiments show that our model outperforms baseline models on four out of five benchmarks in the setting of no additional data.

Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.

Due to their inherent capability in semantic alignment of aspects and their context words, attention mechanism and Convolutional Neural Networks (CNNs) are widely applied for aspect-based sentiment classification. However, these models lack a mechanism to account for relevant syntactical constraints and long-range word dependencies, and hence may mistakenly recognize syntactically irrelevant contextual words as clues for judging aspect sentiment. To tackle this problem, we propose to build a Graph Convolutional Network (GCN) over the dependency tree of a sentence to exploit syntactical information and word dependencies. Based on it, a novel aspect-specific sentiment classification framework is raised. Experiments on three benchmarking collections illustrate that our proposed model has comparable effectiveness to a range of state-of-the-art models, and further demonstrate that both syntactical information and long-range word dependencies are properly captured by the graph convolution structure.

北京阿比特科技有限公司