The recent enthusiasm for open-world vision systems show the high interest of the community to perform perception tasks outside of the closed-vocabulary benchmark setups which have been so popular until now. Being able to discover objects in images/videos without knowing in advance what objects populate the dataset is an exciting prospect. But how to find objects without knowing anything about them? Recent works show that it is possible to perform class-agnostic unsupervised object localization by exploiting self-supervised pre-trained features. We propose here a survey of unsupervised object localization methods that discover objects in images without requiring any manual annotation in the era of self-supervised ViTs. We gather links of discussed methods in the repository //github.com/valeoai/Awesome-Unsupervised-Object-Localization.
Digital whole slides images contain an enormous amount of information providing a strong motivation for the development of automated image analysis tools. Particularly deep neural networks show high potential with respect to various tasks in the field of digital pathology. However, a limitation is given by the fact that typical deep learning algorithms require (manual) annotations in addition to the large amounts of image data, to enable effective training. Multiple instance learning exhibits a powerful tool for learning deep neural networks in a scenario without fully annotated data. These methods are particularly effective in this domain, due to the fact that labels for a complete whole slide image are often captured routinely, whereas labels for patches, regions or pixels are not. This potential already resulted in a considerable number of publications, with the majority published in the last three years. Besides the availability of data and a high motivation from the medical perspective, the availability of powerful graphics processing units exhibits an accelerator in this field. In this paper, we provide an overview of widely and effectively used concepts of used deep multiple instance learning approaches, recent advances and also critically discuss remaining challenges and future potential.
Contemporary machine learning requires training large neural networks on massive datasets and thus faces the challenges of high computational demands. Dataset distillation, as a recent emerging strategy, aims to compress real-world datasets for efficient training. However, this line of research currently struggle with large-scale and high-resolution datasets, hindering its practicality and feasibility. To this end, we re-examine the existing dataset distillation methods and identify three properties required for large-scale real-world applications, namely, realism, diversity, and efficiency. As a remedy, we propose RDED, a novel computationally-efficient yet effective data distillation paradigm, to enable both diversity and realism of the distilled data. Extensive empirical results over various neural architectures and datasets demonstrate the advancement of RDED: we can distill the full ImageNet-1K to a small dataset comprising 10 images per class within 7 minutes, achieving a notable 42% top-1 accuracy with ResNet-18 on a single RTX-4090 GPU (while the SOTA only achieves 21% but requires 6 hours).
This work utilizes a variational autoencoder for channel estimation and evaluates it on real-world measurements. The estimator is trained solely on noisy channel observations and parameterizes an approximation to the mean squared error-optimal estimator by learning observation-dependent conditional first and second moments. The proposed estimator significantly outperforms related state-of-the-art estimators on real-world measurements. We investigate the effect of pre-training with synthetic data and find that the proposed estimator exhibits comparable results to the related estimators if trained on synthetic data and evaluated on the measurement data. Furthermore, pre-training on synthetic data also helps to reduce the required measurement training dataset size.
Optimal decision-making presents a significant challenge for autonomous systems operating in uncertain, stochastic and time-varying environments. Environmental variability over time can significantly impact the system's optimal decision making strategy for mission completion. To model such environments, our work combines the previous notion of Time-Varying Markov Decision Processes (TVMDP) with partial observability and introduces Time-Varying Partially Observable Markov Decision Processes (TV-POMDP). We propose a two-pronged approach to accurately estimate and plan within the TV-POMDP: 1) Memory Prioritized State Estimation (MPSE), which leverages weighted memory to provide more accurate time-varying transition estimates; and 2) an MPSE-integrated planning strategy that optimizes long-term rewards while accounting for temporal constraint. We validate the proposed framework and algorithms using simulations and hardware, with robots exploring a partially observable, time-varying environments. Our results demonstrate superior performance over standard methods, highlighting the framework's effectiveness in stochastic, uncertain, time-varying domains.
Recent advancements in algorithms for sequential decision-making under imperfect information have shown remarkable success in large games such as limit- and no-limit poker. These algorithms traditionally formalize the games using the extensive-form game formalism, which, as we show, while theoretically sound, is memory-inefficient and computationally intensive in practice. To mitigate these challenges, a popular workaround involves using a specialized representation based on player specific information-state trees. However, as we show, this alternative significantly narrows the set of games that can be represented efficiently. In this study, we identify the set of large games on which modern algorithms have been benchmarked as being naturally represented by Sequential Bayesian Games. We elucidate the critical differences between extensive-form game and sequential Bayesian game representations, both theoretically and empirically. We further argue that the impressive experimental results often cited in the literature may be skewed, as they frequently stem from testing these algorithms only on this restricted class of games. By understanding these nuances, we aim to guide future research in developing more universally applicable and efficient algorithms for sequential decision-making under imperfect information.
Robotic interaction in fast-paced environments presents a substantial challenge, particularly in tasks requiring the prediction of dynamic, non-stationary objects for timely and accurate responses. An example of such a task is ping-pong, where the physical limitations of a robot may prevent it from reaching its goal in the time it takes the ball to cross the table. The scene of a ping-pong match contains rich visual information of a player's movement that can allow future game state prediction, with varying degrees of uncertainty. To this aim, we present a visual modeling, prediction, and control system to inform a ping-pong playing robot utilizing visual model uncertainty to allow earlier motion of the robot throughout the game. We present demonstrations and metrics in simulation to show the benefit of incorporating model uncertainty, the limitations of current standard model uncertainty estimators, and the need for more verifiable model uncertainty estimation. Our code is publicly available.
Dialogue state tracking plays a crucial role in extracting information in task-oriented dialogue systems. However, preceding research are limited to textual modalities, primarily due to the shortage of authentic human audio datasets. We address this by investigating synthetic audio data for audio-based DST. To this end, we develop cascading and end-to-end models, train them with our synthetic audio dataset, and test them on actual human speech data. To facilitate evaluation tailored to audio modalities, we introduce a novel PhonemeF1 to capture pronunciation similarity. Experimental results showed that models trained solely on synthetic datasets can generalize their performance to human voice data. By eliminating the dependency on human speech data collection, these insights pave the way for significant practical advancements in audio-based DST. Data and code are available at //github.com/JihyunLee1/E2E-DST.
Modern industrial control systems (ICS) attacks infect supervisory control and data acquisition (SCADA) hosts to stealthily alter industrial processes, causing damage. To detect attacks with low false alarms, recent work detects attacks in both SCADA and process data. Unfortunately, this led to the same problem - disjointed (false) alerts, due to the semantic and time gap in SCADA and process behavior, i.e., SCADA execution does not map to process dynamics nor evolve at similar time scales. We propose BRIDGE to analyze and correlate SCADA and industrial process attacks using domain knowledge to bridge their unique semantic and time evolution. This enables operators to tie malicious SCADA operations to their adverse process effects, which reduces false alarms and improves attack understanding. BRIDGE (i) identifies process constraints violations in SCADA by measuring actuation dependencies in SCADA process-control, and (ii) detects malicious SCADA effects in processes via a physics-informed neural network that embeds generic knowledge of inertial process dynamics. BRIDGE then dynamically aligns both analysis (i and ii) in a time-window that adjusts their time evolution based on process inertial delays. We applied BRIDGE to 11 diverse real-world industrial processes, and adaptive attacks inspired by past events. BRIDGE correlated 98.3% of attacks with 0.8% false positives (FP), compared to 78.3% detection accuracy and 13.7% FP of recent work.
Recent advancements in algorithms for sequential decision-making under imperfect information have shown remarkable success in large games such as limit- and no-limit poker. These algorithms traditionally formalize the games using the extensive-form game formalism, which, as we show, while theoretically sound, is memory-inefficient and computationally intensive in practice. To mitigate these challenges, a popular workaround involves using a specialized representation based on player specific information-state trees. However, as we show, this alternative significantly narrows the set of games that can be represented efficiently. In this study, we identify the set of large games on which modern algorithms have been benchmarked as being naturally represented by Sequential Bayesian Games. We elucidate the critical differences between extensive-form game and sequential Bayesian game representations, both theoretically and empirically. We further argue that the impressive experimental results often cited in the literature may be skewed, as they frequently stem from testing these algorithms only on this restricted class of games. By understanding these nuances, we aim to guide future research in developing more universally applicable and efficient algorithms for sequential decision-making under imperfect information.
Since DARPA Grand Challenges (rural) in 2004/05 and Urban Challenges in 2007, autonomous driving has been the most active field of AI applications. Almost at the same time, deep learning has made breakthrough by several pioneers, three of them (also called fathers of deep learning), Hinton, Bengio and LeCun, won ACM Turin Award in 2019. This is a survey of autonomous driving technologies with deep learning methods. We investigate the major fields of self-driving systems, such as perception, mapping and localization, prediction, planning and control, simulation, V2X and safety etc. Due to the limited space, we focus the analysis on several key areas, i.e. 2D and 3D object detection in perception, depth estimation from cameras, multiple sensor fusion on the data, feature and task level respectively, behavior modelling and prediction of vehicle driving and pedestrian trajectories.