Separation logic's compositionality and local reasoning properties have led to significant advances in scalable static analysis. But program analysis has new challenges -- many programs display computational effects and, orthogonally, static analyzers must handle incorrectness too. We present Outcome Separation Logic (OSL), a program logic that is sound for both correctness and incorrectness reasoning in programs with varying effects. OSL has a frame rule -- just like separation logic -- but uses different underlying assumptions that open up local reasoning to a larger class of properties than can be handled by any single existing logic. Building on this foundational theory, we also define symbolic execution algorithms that use bi-abduction to derive specifications for programs with effects. This involves a new tri-abduction procedure to analyze programs whose execution branches due to effects such as nondeterministic or probabilistic choice. This work furthers the compositionality promised by separation logic by opening up the possibility for greater reuse of analysis tools across two dimensions: bug-finding vs verification in programs with varying effects.
Model compression is a crucial part of deploying neural networks (NNs), especially when the memory and storage of computing devices are limited in many applications. This paper focuses on two model compression techniques: low-rank approximation and weight pruning in neural networks, which are very popular nowadays. However, training NN with low-rank approximation and weight pruning always suffers significant accuracy loss and convergence issues. In this paper, a holistic framework is proposed for model compression from a novel perspective of nonconvex optimization by designing an appropriate objective function. Then, we introduce NN-BCD, a block coordinate descent (BCD) algorithm to solve the nonconvex optimization. One advantage of our algorithm is that an efficient iteration scheme can be derived with closed-form, which is gradient-free. Therefore, our algorithm will not suffer from vanishing/exploding gradient problems. Furthermore, with the Kurdyka-{\L}ojasiewicz (K{\L}) property of our objective function, we show that our algorithm globally converges to a critical point at the rate of O(1/k), where k denotes the number of iterations. Lastly, extensive experiments with tensor train decomposition and weight pruning demonstrate the efficiency and superior performance of the proposed framework. Our code implementation is available at //github.com/ChenyangLi-97/NN-BCD
Neural marked temporal point processes have been a valuable addition to the existing toolbox of statistical parametric models for continuous-time event data. These models are useful for sequences where each event is associated with a single item (a single type of event or a "mark") -- but such models are not suited for the practical situation where each event is associated with a set of items. In this work, we develop a general framework for modeling set-valued data in continuous-time, compatible with any intensity-based recurrent neural point process model. In addition, we develop inference methods that can use such models to answer probabilistic queries such as "the probability of item $A$ being observed before item $B$," conditioned on sequence history. Computing exact answers for such queries is generally intractable for neural models due to both the continuous-time nature of the problem setting and the combinatorially-large space of potential outcomes for each event. To address this, we develop a class of importance sampling methods for querying with set-based sequences and demonstrate orders-of-magnitude improvements in efficiency over direct sampling via systematic experiments with four real-world datasets. We also illustrate how to use this framework to perform model selection using likelihoods that do not involve one-step-ahead prediction.
Mobile edge computing (MEC) is powerful to alleviate the heavy computing tasks in integrated sensing and communication (ISAC) systems. In this paper, we investigate joint beamforming and offloading design in a three-tier integrated sensing, communication and computation (ISCC) framework comprising one cloud server, multiple mobile edge servers, and multiple terminals. While executing sensing tasks, the user terminals can optionally offload sensing data to either MEC server or cloud servers. To minimize the execution latency, we jointly optimize the transmit beamforming matrices and offloading decision variables under the constraint of sensing performance. An alternating optimization algorithm based on multidimensional fractional programming is proposed to tackle the non-convex problem. Simulation results demonstrates the superiority of the proposed mechanism in terms of convergence and task execution latency reduction, compared with the state-of-the-art two-tier ISCC framework.
We propose a novel data-driven semi-confirmatory factor analysis (SCFA) model that addresses the absence of model specification and handles the estimation and inference tasks with high-dimensional data. Confirmatory factor analysis (CFA) is a prevalent and pivotal technique for statistically validating the covariance structure of latent common factors derived from multiple observed variables. In contrast to other factor analysis methods, CFA offers a flexible covariance modeling approach for common factors, enhancing the interpretability of relationships between the common factors, as well as between common factors and observations. However, the application of classic CFA models faces dual barriers: the lack of a prerequisite specification of "non-zero loadings" or factor membership (i.e., categorizing the observations into distinct common factors), and the formidable computational burden in high-dimensional scenarios where the number of observed variables surpasses the sample size. To bridge these two gaps, we propose the SCFA model by integrating the underlying high-dimensional covariance structure of observed variables into the CFA model. Additionally, we offer computationally efficient solutions (i.e., closed-form uniformly minimum variance unbiased estimators) and ensure accurate statistical inference through closed-form exact variance estimators for all model parameters and factor scores. Through an extensive simulation analysis benchmarking against standard computational packages, SCFA exhibits superior performance in estimating model parameters and recovering factor scores, while substantially reducing the computational load, across both low- and high-dimensional scenarios. It exhibits moderate robustness to model misspecification. We illustrate the practical application of the SCFA model by conducting factor analysis on a high-dimensional gene expression dataset.
Knowledge graph reasoning (KGR), aiming to deduce new facts from existing facts based on mined logic rules underlying knowledge graphs (KGs), has become a fast-growing research direction. It has been proven to significantly benefit the usage of KGs in many AI applications, such as question answering and recommendation systems, etc. According to the graph types, the existing KGR models can be roughly divided into three categories, \textit{i.e.,} static models, temporal models, and multi-modal models. The early works in this domain mainly focus on static KGR and tend to directly apply general knowledge graph embedding models to the reasoning task. However, these models are not suitable for more complex but practical tasks, such as inductive static KGR, temporal KGR, and multi-modal KGR. To this end, multiple works have been developed recently, but no survey papers and open-source repositories comprehensively summarize and discuss models in this important direction. To fill the gap, we conduct a survey for knowledge graph reasoning tracing from static to temporal and then to multi-modal KGs. Concretely, the preliminaries, summaries of KGR models, and typical datasets are introduced and discussed consequently. Moreover, we discuss the challenges and potential opportunities. The corresponding open-source repository is shared on GitHub: //github.com/LIANGKE23/Awesome-Knowledge-Graph-Reasoning.
Deep learning-based algorithms have seen a massive popularity in different areas of remote sensing image analysis over the past decade. Recently, transformers-based architectures, originally introduced in natural language processing, have pervaded computer vision field where the self-attention mechanism has been utilized as a replacement to the popular convolution operator for capturing long-range dependencies. Inspired by recent advances in computer vision, remote sensing community has also witnessed an increased exploration of vision transformers for a diverse set of tasks. Although a number of surveys have focused on transformers in computer vision in general, to the best of our knowledge we are the first to present a systematic review of recent advances based on transformers in remote sensing. Our survey covers more than 60 recent transformers-based methods for different remote sensing problems in sub-areas of remote sensing: very high-resolution (VHR), hyperspectral (HSI) and synthetic aperture radar (SAR) imagery. We conclude the survey by discussing different challenges and open issues of transformers in remote sensing. Additionally, we intend to frequently update and maintain the latest transformers in remote sensing papers with their respective code at: //github.com/VIROBO-15/Transformer-in-Remote-Sensing
Existing recommender systems extract the user preference based on learning the correlation in data, such as behavioral correlation in collaborative filtering, feature-feature, or feature-behavior correlation in click-through rate prediction. However, regretfully, the real world is driven by causality rather than correlation, and correlation does not imply causation. For example, the recommender systems can recommend a battery charger to a user after buying a phone, in which the latter can serve as the cause of the former, and such a causal relation cannot be reversed. Recently, to address it, researchers in recommender systems have begun to utilize causal inference to extract causality, enhancing the recommender system. In this survey, we comprehensively review the literature on causal inference-based recommendation. At first, we present the fundamental concepts of both recommendation and causal inference as the basis of later content. We raise the typical issues that the non-causality recommendation is faced. Afterward, we comprehensively review the existing work of causal inference-based recommendation, based on a taxonomy of what kind of problem causal inference addresses. Last, we discuss the open problems in this important research area, along with interesting future works.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.
We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.