亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce RJUA-QA, a novel medical dataset for question answering (QA) and reasoning with clinical evidence, contributing to bridge the gap between general large language models (LLMs) and medical-specific LLM applications. RJUA-QA is derived from realistic clinical scenarios and aims to facilitate LLMs in generating reliable diagnostic and advice. The dataset contains 2,132 curated Question-Context-Answer pairs, corresponding about 25,000 diagnostic records and clinical cases. The dataset covers 67 common urological disease categories, where the disease coverage exceeds 97.6\% of the population seeking medical services in urology. Each data instance in RJUA-QA comprises: (1) a question mirroring real patient to inquiry about clinical symptoms and medical conditions, (2) a context including comprehensive expert knowledge, serving as a reference for medical examination and diagnosis, (3) a doctor response offering the diagnostic conclusion and suggested examination guidance, (4) a diagnosed clinical disease as the recommended diagnostic outcome, and (5) clinical advice providing recommendations for medical examination. RJUA-QA is the first medical QA dataset for clinical reasoning over the patient inquiries, where expert-level knowledge and experience are required for yielding diagnostic conclusions and medical examination advice. A comprehensive evaluation is conducted to evaluate the performance of both medical-specific and general LLMs on the RJUA-QA dataset. Our data is are publicly available at \url{//github.com/alipay/RJU_Ant_QA}.

相關內容

自(zi)動問(wen)答(Question Answering, QA)是(shi)指利用(yong)計(ji)算機自(zi)動回答用(yong)戶(hu)所提(ti)出的(de)(de)問(wen)題以(yi)滿足用(yong)戶(hu)知識需求(qiu)的(de)(de)任務。不(bu)同(tong)于現有搜索引擎,問(wen)答系(xi)統是(shi)信息服(fu)務的(de)(de)一種(zhong)高(gao)級形(xing)式,系(xi)統返回用(yong)戶(hu)的(de)(de)不(bu)再是(shi)基(ji)于關鍵詞匹配排序的(de)(de)文檔列表,而(er)是(shi)精(jing)準(zhun)的(de)(de)自(zi)然(ran)語言答案。近(jin)年(nian)來,隨著(zhu)人(ren)工(gong)智能(neng)的(de)(de)飛速發展,自(zi)動問(wen)答已經(jing)成為倍受關注(zhu)且發展前景廣泛的(de)(de)研究方向。

知識薈萃

精品入門(men)和進階教程、論文和代(dai)碼(ma)整理等

更多

查看相關VIP內容、論文、資訊等

Deep learning methods have shown strong performance in solving tasks for historical document image analysis. However, despite current libraries and frameworks, programming an experiment or a set of experiments and executing them can be time-consuming. This is why we propose an open-source deep learning framework, DIVA-DAF, which is based on PyTorch Lightning and specifically designed for historical document analysis. Pre-implemented tasks such as segmentation and classification can be easily used or customized. It is also easy to create one's own tasks with the benefit of powerful modules for loading data, even large data sets, and different forms of ground truth. The applications conducted have demonstrated time savings for the programming of a document analysis task, as well as for different scenarios such as pre-training or changing the architecture. Thanks to its data module, the framework also allows to reduce the time of model training significantly.

This paper introduces the DeepATLAS foundational model for localization tasks in the domain of high-dimensional biomedical data. Upon convergence of the proposed self-supervised objective, a pretrained model maps an input to an anatomically-consistent embedding from which any point or set of points (e.g., boxes or segmentations) may be identified in a one-shot or few-shot approach. As a representative benchmark, a DeepATLAS model pretrained on a comprehensive cohort of 51,000+ unlabeled 3D computed tomography exams yields high one-shot segmentation performance on over 50 anatomic structures across four different external test sets, either matching or exceeding the performance of a standard supervised learning model. Further improvements in accuracy can be achieved by adding a small amount of labeled data using either a semisupervised or more conventional fine-tuning strategy.

We consider the setting of synthetic control methods (SCMs), a canonical approach used to estimate the treatment effect on the treated in a panel data setting. We shed light on a frequently overlooked but ubiquitous assumption made in SCMs of "overlap": a treated unit can be written as some combination -- typically, convex or linear combination -- of the units that remain under control. We show that if units select their own interventions, and there is sufficiently large heterogeneity between units that prefer different interventions, overlap will not hold. We address this issue by proposing a framework which incentivizes units with different preferences to take interventions they would not normally consider. Specifically, leveraging tools from information design and online learning, we propose a SCM that incentivizes exploration in panel data settings by providing incentive-compatible intervention recommendations to units. We establish this estimator obtains valid counterfactual estimates without the need for an a priori overlap assumption. We extend our results to the setting of synthetic interventions, where the goal is to produce counterfactual outcomes under all interventions, not just control. Finally, we provide two hypothesis tests for determining whether unit overlap holds for a given panel dataset.

Most of the intrusion detection datasets to research machine learning-based intrusion detection systems (IDSs) are devoted to cyber-only systems, and they typically collect data from one architectural layer. Additionally, often the attacks are generated in dedicated attack sessions, without reproducing the realistic alternation and overlap of normal and attack actions. We present a dataset for intrusion detection by performing penetration testing on an embedded cyber-physical system built over Robot Operating System 2 (ROS2). Features are monitored from three architectural layers: the Linux operating system, the network, and the ROS2 services. The dataset is structured as a time series and describes the expected behavior of the system and its response to ROS2-specific attacks: it repeatedly alternates periods of attack-free operation with periods when a specific attack is being performed. Noteworthy, this allows measuring the time to detect an attacker and the number of malicious activities performed before detection. Also, it allows training an intrusion detector to minimize both, by taking advantage of the numerous alternating periods of normal and attack operations.

Reconstruction attacks and defenses are essential in understanding the data leakage problem in machine learning. However, prior work has centered around empirical observations of gradient inversion attacks, lacks theoretical groundings, and was unable to disentangle the usefulness of defending methods versus the computational limitation of attacking methods. In this work, we propose a strong reconstruction attack in the setting of federated learning. The attack reconstructs intermediate features and nicely integrates with and outperforms most of the previous methods. On this stronger attack, we thoroughly investigate both theoretically and empirically the effect of the most common defense methods. Our findings suggest that among various defense mechanisms, such as gradient clipping, dropout, additive noise, local aggregation, etc., gradient pruning emerges as the most effective strategy to defend against state-of-the-art attacks.

We apply causal mediation analysis to explain the decision-making process of neural models for rumour detection on Twitter. Interventions at the input and network level reveal the causal impacts of tweets and words in the model output. We find that our approach CMA-R -- Causal Mediation Analysis for Rumour detection -- identifies salient tweets that explain model predictions and show strong agreement with human judgements for critical tweets determining the truthfulness of stories. CMA-R can further highlight causally impactful words in the salient tweets, providing another layer of interpretability and transparency into these blackbox rumour detection systems. Code is available at: //github.com/ltian678/cma-r.

Applying artificial intelligence techniques in medical imaging is one of the most promising areas in medicine. However, most of the recent success in this area highly relies on large amounts of carefully annotated data, whereas annotating medical images is a costly process. In this paper, we propose a novel method, called FocalMix, which, to the best of our knowledge, is the first to leverage recent advances in semi-supervised learning (SSL) for 3D medical image detection. We conducted extensive experiments on two widely used datasets for lung nodule detection, LUNA16 and NLST. Results show that our proposed SSL methods can achieve a substantial improvement of up to 17.3% over state-of-the-art supervised learning approaches with 400 unlabeled CT scans.

We present MMKG, a collection of three knowledge graphs that contain both numerical features and (links to) images for all entities as well as entity alignments between pairs of KGs. Therefore, multi-relational link prediction and entity matching communities can benefit from this resource. We believe this data set has the potential to facilitate the development of novel multi-modal learning approaches for knowledge graphs.We validate the utility ofMMKG in the sameAs link prediction task with an extensive set of experiments. These experiments show that the task at hand benefits from learning of multiple feature types.

We propose a novel attention gate (AG) model for medical imaging that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a specific task. This enables us to eliminate the necessity of using explicit external tissue/organ localisation modules of cascaded convolutional neural networks (CNNs). AGs can be easily integrated into standard CNN architectures such as the U-Net model with minimal computational overhead while increasing the model sensitivity and prediction accuracy. The proposed Attention U-Net architecture is evaluated on two large CT abdominal datasets for multi-class image segmentation. Experimental results show that AGs consistently improve the prediction performance of U-Net across different datasets and training sizes while preserving computational efficiency. The code for the proposed architecture is publicly available.

We study the problem of learning to reason in large scale knowledge graphs (KGs). More specifically, we describe a novel reinforcement learning framework for learning multi-hop relational paths: we use a policy-based agent with continuous states based on knowledge graph embeddings, which reasons in a KG vector space by sampling the most promising relation to extend its path. In contrast to prior work, our approach includes a reward function that takes the accuracy, diversity, and efficiency into consideration. Experimentally, we show that our proposed method outperforms a path-ranking based algorithm and knowledge graph embedding methods on Freebase and Never-Ending Language Learning datasets.

北京阿比特科技有限公司