亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the problem of aligning a video that captures a local portion of an environment to the 2D LiDAR scan of the entire environment. We introduce a method (VioLA) that starts with building a semantic map of the local scene from the image sequence, then extracts points at a fixed height for registering to the LiDAR map. Due to reconstruction errors or partial coverage of the camera scan, the reconstructed semantic map may not contain sufficient information for registration. To address this problem, VioLA makes use of a pre-trained text-to-image inpainting model paired with a depth completion model for filling in the missing scene content in a geometrically consistent fashion to support pose registration. We evaluate VioLA on two real-world RGB-D benchmarks, as well as a self-captured dataset of a large office scene. Notably, our proposed scene completion module improves the pose registration performance by up to 20%.

相關內容

As the landscape of time-sensitive applications gains prominence in 5G/6G communications, timeliness of information updates at network nodes has become crucial, which is popularly quantified in the literature by the age of information metric. However, as we devise policies to improve age of information of our systems, we inadvertently introduce a new vulnerability for adversaries to exploit. In this article, we comprehensively discuss the diverse threats that age-based systems are vulnerable to. We begin with discussion on densely interconnected networks that employ gossiping between nodes to expedite dissemination of dynamic information in the network, and show how the age-based nature of gossiping renders these networks uniquely susceptible to threats such as timestomping attacks, jamming attacks, and the propagation of misinformation. Later, we survey adversarial works within simpler network settings, specifically in one-hop and two-hop configurations, and delve into adversarial robustness concerning challenges posed by jamming, timestomping, and issues related to privacy leakage. We conclude this article with future directions that aim to address challenges posed by more intelligent adversaries and robustness of networks to them.

We present a short tutorial on to the use of the R gasper package. Gasper is a package dedicated to signal processing on graphs. It also provides an interface to the SuiteSparse Matrix Collection.

Recently, researchers have attempted to investigate the capability of LLMs in handling videos and proposed several video LLM models. However, the ability of LLMs to handle video grounding (VG), which is an important time-related video task requiring the model to precisely locate the start and end timestamps of temporal moments in videos that match the given textual queries, still remains unclear and unexplored in literature. To fill the gap, in this paper, we propose the LLM4VG benchmark, which systematically evaluates the performance of different LLMs on video grounding tasks. Based on our proposed LLM4VG, we design extensive experiments to examine two groups of video LLM models on video grounding: (i) the video LLMs trained on the text-video pairs (denoted as VidLLM), and (ii) the LLMs combined with pretrained visual description models such as the video/image captioning model. We propose prompt methods to integrate the instruction of VG and description from different kinds of generators, including caption-based generators for direct visual description and VQA-based generators for information enhancement. We also provide comprehensive comparisons of various VidLLMs and explore the influence of different choices of visual models, LLMs, prompt designs, etc, as well. Our experimental evaluations lead to two conclusions: (i) the existing VidLLMs are still far away from achieving satisfactory video grounding performance, and more time-related video tasks should be included to further fine-tune these models, and (ii) the combination of LLMs and visual models shows preliminary abilities for video grounding with considerable potential for improvement by resorting to more reliable models and further guidance of prompt instructions.

Collecting real-world optical flow datasets is a formidable challenge due to the high cost of labeling. A shortage of datasets significantly constrains the real-world performance of optical flow models. Building virtual datasets that resemble real scenarios offers a potential solution for performance enhancement, yet a domain gap separates virtual and real datasets. This paper introduces FlowDA, an unsupervised domain adaptive (UDA) framework for optical flow estimation. FlowDA employs a UDA architecture based on mean-teacher and integrates concepts and techniques in unsupervised optical flow estimation. Furthermore, an Adaptive Curriculum Weighting (ACW) module based on curriculum learning is proposed to enhance the training effectiveness. Experimental outcomes demonstrate that our FlowDA outperforms state-of-the-art unsupervised optical flow estimation method SMURF by 21.6%, real optical flow dataset generation method MPI-Flow by 27.8%, and optical flow estimation adaptive method FlowSupervisor by 30.9%, offering novel insights for enhancing the performance of optical flow estimation in real-world scenarios. The code will be open-sourced after the publication of this paper.

The multimodal recommendation has gradually become the infrastructure of online media platforms, enabling them to provide personalized service to users through a joint modeling of user historical behaviors (e.g., purchases, clicks) and item various modalities (e.g., visual and textual). The majority of existing studies typically focus on utilizing modal features or modal-related graph structure to learn user local interests. Nevertheless, these approaches encounter two limitations: (1) Shared updates of user ID embeddings result in the consequential coupling between collaboration and multimodal signals; (2) Lack of exploration into robust global user interests to alleviate the sparse interaction problems faced by local interest modeling. To address these issues, we propose a novel Local and Global Graph Learning-guided Multimodal Recommender (LGMRec), which jointly models local and global user interests. Specifically, we present a local graph embedding module to independently learn collaborative-related and modality-related embeddings of users and items with local topological relations. Moreover, a global hypergraph embedding module is designed to capture global user and item embeddings by modeling insightful global dependency relations. The global embeddings acquired within the hypergraph embedding space can then be combined with two decoupled local embeddings to improve the accuracy and robustness of recommendations. Extensive experiments conducted on three benchmark datasets demonstrate the superiority of our LGMRec over various state-of-the-art recommendation baselines, showcasing its effectiveness in modeling both local and global user interests.

Unsupervised depth completion methods are trained by minimizing sparse depth and image reconstruction error. Block artifacts from resampling, intensity saturation, and occlusions are amongst the many undesirable by-products of common data augmentation schemes that affect image reconstruction quality, and thus the training signal. Hence, typical augmentations on images viewed as essential to training pipelines in other vision tasks have seen limited use beyond small image intensity changes and flipping. The sparse depth modality have seen even less as intensity transformations alter the scale of the 3D scene, and geometric transformations may decimate the sparse points during resampling. We propose a method that unlocks a wide range of previously-infeasible geometric augmentations for unsupervised depth completion. This is achieved by reversing, or ``undo"-ing, geometric transformations to the coordinates of the output depth, warping the depth map back to the original reference frame. This enables computing the reconstruction losses using the original images and sparse depth maps, eliminating the pitfalls of naive loss computation on the augmented inputs. This simple yet effective strategy allows us to scale up augmentations to boost performance. We demonstrate our method on indoor (VOID) and outdoor (KITTI) datasets where we improve upon three existing methods by an average of 11.75% across both datasets.

The boom in Large Language Models (LLMs) like GPT-4 and ChatGPT has marked a significant advancement in artificial intelligence. These models are becoming increasingly complex and powerful to train and serve. This growth in capabilities comes with a substantial increase in computational requirements, both in terms of hardware resources and energy consumption. The goal of this paper is to showcase how hardware and software co-design can come together and allow us to create customized hardware systems for specific LLM workloads. We propose a simulation workflow that allows us to combine model parallelism techniques with a multi-accelerator simulation framework for efficiency metrics. We focus on inference workloads and report power, cycle, and latency metrics upon performing a design space exploration search over multiple software and hardware configurations.

We define and study the Functional Aggregate Query (FAQ) problem, which encompasses many frequently asked questions in constraint satisfaction, databases, matrix operations, probabilistic graphical models and logic. This is our main conceptual contribution. We then present a simple algorithm called "InsideOut" to solve this general problem. InsideOut is a variation of the traditional dynamic programming approach for constraint programming based on variable elimination. Our variation adds a couple of simple twists to basic variable elimination in order to deal with the generality of FAQ, to take full advantage of Grohe and Marx's fractional edge cover framework, and of the analysis of recent worst-case optimal relational join algorithms. As is the case with constraint programming and graphical model inference, to make InsideOut run efficiently we need to solve an optimization problem to compute an appropriate 'variable ordering'. The main technical contribution of this work is a precise characterization of when a variable ordering is 'semantically equivalent' to the variable ordering given by the input FAQ expression. Then, we design an approximation algorithm to find an equivalent variable ordering that has the best 'fractional FAQ-width'. Our results imply a host of known and a few new results in graphical model inference, matrix operations, relational joins, and logic. We also briefly explain how recent algorithms on beyond worst-case analysis for joins and those for solving SAT and #SAT can be viewed as variable elimination to solve FAQ over compactly represented input functions.

In Ultrasound Localization Microscopy (ULM),achieving high-resolution images relies on the precise localization of contrast agent particles across consecutive beam-formed frames. However, our study uncovers an enormous potential: The process of delay-and-sum beamforming leads to an irreversible reduction of Radio-Frequency (RF) data, while its implications for localization remain largely unexplored. The rich contextual information embedded within RF wavefronts, including their hyperbolic shape and phase, offers great promise for guiding Deep Neural Networks (DNNs) in challenging localization scenarios. To fully exploit this data, we propose to directly localize scatterers in RF signals. Our approach involves a custom super-resolution DNN using learned feature channel shuffling and a novel semi-global convolutional sampling block tailored for reliable and accurate wavefront localization. Additionally, we introduce a geometric point transformation that facilitates seamless mapping between RF and B-mode coordinate space. To understand the impact of beamforming on ULM, we validate the effectiveness of our method by conducting an extensive comparison with State-Of-The-Art (SOTA) techniques. We present the inaugural in vivo results from an RF-trained DNN, highlighting its real-world practicality. Our findings show that RF-ULM bridges the domain gap between synthetic and real datasets, offering a considerable advantage in terms of precision and complexity. To enable the broader research community to benefit from our findings, our code and the associated SOTA methods are made available at //github.com/hahnec/rf-ulm.

We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.

北京阿比特科技有限公司