Deep networks show promising performance in image quality assessment (IQA), whereas few studies have investigated how a deep model works. In this work, a positional masked transformer for IQA is first developed, based on which we observe that half of an image might contribute trivially to image quality, whereas the other half is crucial. Such observation is generalized to that half of the image regions can dominate image quality in several CNN-based IQA models. Motivated by this observation, three semantic measures (saliency, frequency, objectness) are then derived, showing high accordance with importance degree of image regions in IQA.
Font design is of vital importance in the digital content design and modern printing industry. Developing algorithms capable of automatically synthesizing vector fonts can significantly facilitate the font design process. However, existing methods mainly concentrate on raster image generation, and only a few approaches can directly synthesize vector fonts. This paper proposes an end-to-end trainable method, VecFontSDF, to reconstruct and synthesize high-quality vector fonts using signed distance functions (SDFs). Specifically, based on the proposed SDF-based implicit shape representation, VecFontSDF learns to model each glyph as shape primitives enclosed by several parabolic curves, which can be precisely converted to quadratic B\'ezier curves that are widely used in vector font products. In this manner, most image generation methods can be easily extended to synthesize vector fonts. Qualitative and quantitative experiments conducted on a publicly-available dataset demonstrate that our method obtains high-quality results on several tasks, including vector font reconstruction, interpolation, and few-shot vector font synthesis, markedly outperforming the state of the art.
Various contrastive learning approaches have been proposed in recent years and achieve significant empirical success. While effective and prevalent, contrastive learning has been less explored for time series data. A key component of contrastive learning is to select appropriate augmentations imposing some priors to construct feasible positive samples, such that an encoder can be trained to learn robust and discriminative representations. Unlike image and language domains where ``desired'' augmented samples can be generated with the rule of thumb guided by prefabricated human priors, the ad-hoc manual selection of time series augmentations is hindered by their diverse and human-unrecognizable temporal structures. How to find the desired augmentations of time series data that are meaningful for given contrastive learning tasks and datasets remains an open question. In this work, we address the problem by encouraging both high \textit{fidelity} and \textit{variety} based upon information theory. A theoretical analysis leads to the criteria for selecting feasible data augmentations. On top of that, we propose a new contrastive learning approach with information-aware augmentations, InfoTS, that adaptively selects optimal augmentations for time series representation learning. Experiments on various datasets show highly competitive performance with up to 12.0\% reduction in MSE on forecasting tasks and up to 3.7\% relative improvement in accuracy on classification tasks over the leading baselines.
Despite thousands of researchers, engineers, and artists actively working on improving text-to-image generation models, systems often fail to produce images that accurately align with the text inputs. We introduce TIFA (Text-to-Image Faithfulness evaluation with question Answering), an automatic evaluation metric that measures the faithfulness of a generated image to its text input via visual question answering (VQA). Specifically, given a text input, we automatically generate several question-answer pairs using a language model. We calculate image faithfulness by checking whether existing VQA models can answer these questions using the generated image. TIFA is a reference-free metric that allows for fine-grained and interpretable evaluations of generated images. TIFA also has better correlations with human judgments than existing metrics. Based on this approach, we introduce TIFA v1.0, a benchmark consisting of 4K diverse text inputs and 25K questions across 12 categories (object, counting, etc.). We present a comprehensive evaluation of existing text-to-image models using TIFA v1.0 and highlight the limitations and challenges of current models. For instance, we find that current text-to-image models, despite doing well on color and material, still struggle in counting, spatial relations, and composing multiple objects. We hope our benchmark will help carefully measure the research progress in text-to-image synthesis and provide valuable insights for further research.
Inverse Reinforcement Learning (IRL) is a powerful paradigm for inferring a reward function from expert demonstrations. Many IRL algorithms require a known transition model and sometimes even a known expert policy, or they at least require access to a generative model. However, these assumptions are too strong for many real-world applications, where the environment can be accessed only through sequential interaction. We propose a novel IRL algorithm: Active exploration for Inverse Reinforcement Learning (AceIRL), which actively explores an unknown environment and expert policy to quickly learn the expert's reward function and identify a good policy. AceIRL uses previous observations to construct confidence intervals that capture plausible reward functions and find exploration policies that focus on the most informative regions of the environment. AceIRL is the first approach to active IRL with sample-complexity bounds that does not require a generative model of the environment. AceIRL matches the sample complexity of active IRL with a generative model in the worst case. Additionally, we establish a problem-dependent bound that relates the sample complexity of AceIRL to the suboptimality gap of a given IRL problem. We empirically evaluate AceIRL in simulations and find that it significantly outperforms more naive exploration strategies.
To replicate the success of text-to-image (T2I) generation, recent works employ large-scale video datasets to train a text-to-video (T2V) generator. Despite their promising results, such paradigm is computationally expensive. In this work, we propose a new T2V generation setting$\unicode{x2014}$One-Shot Video Tuning, where only one text-video pair is presented. Our model is built on state-of-the-art T2I diffusion models pre-trained on massive image data. We make two key observations: 1) T2I models can generate still images that represent verb terms; 2) extending T2I models to generate multiple images concurrently exhibits surprisingly good content consistency. To further learn continuous motion, we introduce Tune-A-Video, which involves a tailored spatio-temporal attention mechanism and an efficient one-shot tuning strategy. At inference, we employ DDIM inversion to provide structure guidance for sampling. Extensive qualitative and numerical experiments demonstrate the remarkable ability of our method across various applications.
Temporal data, representing chronological observations of complex systems, has always been a typical data structure that can be widely generated by many domains, such as industry, medicine and finance. Analyzing this type of data is extremely valuable for various applications. Thus, different temporal data analysis tasks, eg, classification, clustering and prediction, have been proposed in the past decades. Among them, causal discovery, learning the causal relations from temporal data, is considered an interesting yet critical task and has attracted much research attention. Existing casual discovery works can be divided into two highly correlated categories according to whether the temporal data is calibrated, ie, multivariate time series casual discovery, and event sequence casual discovery. However, most previous surveys are only focused on the time series casual discovery and ignore the second category. In this paper, we specify the correlation between the two categories and provide a systematical overview of existing solutions. Furthermore, we provide public datasets, evaluation metrics and new perspectives for temporal data casual discovery.
Coreference resolution aims to identify words and phrases which refer to same entity in a text, a core task in natural language processing. In this paper, we extend this task to resolving coreferences in long-form narrations of visual scenes. First we introduce a new dataset with annotated coreference chains and their bounding boxes, as most existing image-text datasets only contain short sentences without coreferring expressions or labeled chains. We propose a new technique that learns to identify coreference chains using weak supervision, only from image-text pairs and a regularization using prior linguistic knowledge. Our model yields large performance gains over several strong baselines in resolving coreferences. We also show that coreference resolution helps improving grounding narratives in images.
Semi-supervised learning (semi-SL) is a promising alternative to supervised learning for medical image analysis when obtaining good quality supervision for medical imaging is difficult. However, semi-SL assumes that the underlying distribution of unaudited data matches that of the few labeled samples, which is often violated in practical settings, particularly in medical images. The presence of out-of-distribution (OOD) samples in the unlabeled training pool of semi-SL is inevitable and can reduce the efficiency of the algorithm. Common preprocessing methods to filter out outlier samples may not be suitable for medical images that involve a wide range of anatomical structures and rare morphologies. In this paper, we propose a novel pipeline for addressing open-set supervised learning challenges in digital histology images. Our pipeline efficiently estimates an OOD score for each unlabelled data point based on self-supervised learning to calibrate the knowledge needed for a subsequent semi-SL framework. The outlier score derived from the OOD detector is used to modulate sample selection for the subsequent semi-SL stage, ensuring that samples conforming to the distribution of the few labeled samples are more frequently exposed to the subsequent semi-SL framework. Our framework is compatible with any semi-SL framework, and we base our experiments on the popular Mixmatch semi-SL framework. We conduct extensive studies on two digital pathology datasets, Kather colorectal histology dataset and a dataset derived from TCGA-BRCA whole slide images, and establish the effectiveness of our method by comparing with popular methods and frameworks in semi-SL algorithms through various experiments.
In today's Internet, HTTP Adaptive Streaming (HAS) is the mainstream standard for video streaming, which switches the bitrate of the video content based on an Adaptive BitRate (ABR) algorithm. An effective Quality of Experience (QoE) assessment metric can provide crucial feedback to an ABR algorithm. However, predicting such real-time QoE on the client side is challenging. The QoE prediction requires high consistency with the Human Visual System (HVS), low latency, and blind assessment, which are difficult to realize together. To address this challenge, we analyzed various characteristics of HAS systems and propose a non-uniform sampling metric to reduce time complexity. Furthermore, we design an effective QoE metric that integrates resolution and rebuffering time as the Quality of Service (QoS), as well as spatiotemporal output from a deep neural network and specific switching events as content information. These reward and penalty features are regressed into quality scores with a Support Vector Regression (SVR) model. Experimental results show that the accuracy of our metric outperforms the mainstream blind QoE metrics by 0.3, and its computing time is only 60\% of the video playback, indicating that the proposed metric is capable of providing real-time guidance to ABR algorithms and improving the overall performance of HAS.
Hashing has been widely used in approximate nearest search for large-scale database retrieval for its computation and storage efficiency. Deep hashing, which devises convolutional neural network architecture to exploit and extract the semantic information or feature of images, has received increasing attention recently. In this survey, several deep supervised hashing methods for image retrieval are evaluated and I conclude three main different directions for deep supervised hashing methods. Several comments are made at the end. Moreover, to break through the bottleneck of the existing hashing methods, I propose a Shadow Recurrent Hashing(SRH) method as a try. Specifically, I devise a CNN architecture to extract the semantic features of images and design a loss function to encourage similar images projected close. To this end, I propose a concept: shadow of the CNN output. During optimization process, the CNN output and its shadow are guiding each other so as to achieve the optimal solution as much as possible. Several experiments on dataset CIFAR-10 show the satisfying performance of SRH.