亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The ability to interact with machines using natural human language is becoming not just commonplace, but expected. The next step is not just text interfaces, but speech interfaces and not just with computers, but with all machines including robots. In this paper, we chronicle the recent history of this growing field of spoken dialogue with robots and offer the community three proposals, the first focused on education, the second on benchmarks, and the third on the modeling of language when it comes to spoken interaction with robots. The three proposals should act as white papers for any researcher to take and build upon.

相關內容

The rapid advancements in Large Language Models (LLMs) have revolutionized natural language processing, with GPTs, customized versions of ChatGPT available on the GPT Store, emerging as a prominent technology for specific domains and tasks. To support academic research on GPTs, we introduce GPTZoo, a large-scale dataset comprising 730,420 GPT instances. Each instance includes rich metadata with 21 attributes describing its characteristics, as well as instructions, knowledge files, and third-party services utilized during its development. GPTZoo aims to provide researchers with a comprehensive and readily available resource to study the real-world applications, performance, and potential of GPTs. To facilitate efficient retrieval and analysis of GPTs, we also developed an automated command-line interface (CLI) that supports keyword-based searching of the dataset. To promote open research and innovation, the GPTZoo dataset will undergo continuous updates, and we are granting researchers public access to GPTZoo and its associated tools.

In recent times, large language models (LLMs) have made significant strides in generating computer code, blurring the lines between code created by humans and code produced by artificial intelligence (AI). As these technologies evolve rapidly, it is crucial to explore how they influence code generation, especially given the risk of misuse in areas like higher education. This paper explores this issue by using advanced classification techniques to differentiate between code written by humans and that generated by ChatGPT, a type of LLM. We employ a new approach that combines powerful embedding features (black-box) with supervised learning algorithms - including Deep Neural Networks, Random Forests, and Extreme Gradient Boosting - to achieve this differentiation with an impressive accuracy of 98%. For the successful combinations, we also examine their model calibration, showing that some of the models are extremely well calibrated. Additionally, we present white-box features and an interpretable Bayes classifier to elucidate critical differences between the code sources, enhancing the explainability and transparency of our approach. Both approaches work well but provide at most 85-88% accuracy. We also show that untrained humans solve the same task not better than random guessing. This study is crucial in understanding and mitigating the potential risks associated with using AI in code generation, particularly in the context of higher education, software development, and competitive programming.

We propose the Data Contamination Quiz (DCQ), a simple and effective approach to detect data contamination in large language models (LLMs) and estimate the amount of it. Specifically, we frame data contamination detection as a series of multiple-choice questions and devise a quiz format wherein three perturbed versions of each subsampled instance from a specific dataset partition (e.g., GSM8k test set) are created. These changes only include word-level perturbations. The generated perturbations, along with the original dataset instance, form the options in the DCQ, with an extra option accommodating the possibility of selecting none of the provided options. Given that the only distinguishing signal among the options is the exact wording with respect to the original dataset instance, an LLM, when tasked with identifying the original dataset instance, gravitates towards selecting the original one if it has been exposed to it in its pre-training phase -- a trait intrinsic to LLMs. While accounting for positional biases in LLMs, the quiz performance reveals the contamination level for the model being examined with the dataset partition to which the quiz pertains. Applied to various datasets with GPT-4 and GPT-3.5, our findings -- while fully lacking access to pre-training data and model parameters -- suggest that DCQ achieves state-of-the-art results and uncovers greater contamination/memorization levels compared to existing methods and proficiently bypasses more safety filters, especially those set to avoid generating copyrighted contents.

The development of large language models (LLMs) has significantly advanced the emergence of large multimodal models (LMMs). While LMMs have achieved tremendous success by promoting the synergy between multimodal comprehension and creation, they often face challenges when confronted with out-of-distribution data. This is primarily due to their reliance on image encoders trained to encode images into task-relevant features, which may lead them to disregard irrelevant details. Delving into the modeling capabilities of diffusion models for images naturally prompts the question: Can diffusion models serve as the eyes of large language models for image perception? In this paper, we propose DEEM, a simple and effective approach that utilizes the generative feedback of diffusion models to align the semantic distributions of the image encoder. This addresses the drawbacks of previous methods that solely relied on image encoders like ViT, thereby enhancing the model's resilience against out-of-distribution samples and reducing visual hallucinations. Importantly, this is achieved without requiring additional training modules and with fewer training parameters. We extensively evaluated DEEM on both our newly constructed RobustVQA benchmark and another well-known benchmark, POPE, for object hallucination. Compared to the state-of-the-art interleaved content generation models, DEEM exhibits enhanced robustness and a superior capacity to alleviate model hallucinations while utilizing fewer trainable parameters, less pre-training data (10%), and a smaller base model size.

Large language models have demonstrated exceptional capability in natural language understanding and generation. However, their generation speed is limited by the inherently sequential nature of their decoding process, posing challenges for real-time applications. This paper introduces Lexical Unit Decoding (LUD), a novel decoding methodology implemented in a data-driven manner, accelerating the decoding process without sacrificing output quality. The core of our approach is the observation that a pre-trained language model can confidently predict multiple contiguous tokens, forming the basis for a \textit{lexical unit}, in which these contiguous tokens could be decoded in parallel. Extensive experiments validate that our method substantially reduces decoding time while maintaining generation quality, i.e., 33\% speed up on natural language generation with no quality loss, and 30\% speed up on code generation with a negligible quality loss of 3\%. Distinctively, LUD requires no auxiliary models and does not require changes to existing architectures. It can also be integrated with other decoding acceleration methods, thus achieving an even more pronounced inference efficiency boost. We posit that the foundational principles of LUD could define a new decoding paradigm for future language models, enhancing their applicability for a broader spectrum of applications. All codes are be publicly available at //github.com/tjunlp-lab/Lexical-Unit-Decoding-LUD-. Keywords: Parallel Decoding, Lexical Unit Decoding, Large Language Model

Large language models (LLMs) have exhibited impressive performance in language comprehension and various reasoning tasks. However, their abilities in spatial reasoning, a crucial aspect of human cognition, remain relatively unexplored. Human possess a remarkable ability to create mental images of unseen objects and actions through a process known as the Mind's Eye, enabling the imagination of the unseen world. Inspired by this cognitive capacity, we propose Visualization-of-Thought (VoT) prompting. VoT aims to elicit spatial reasoning of LLMs by visualizing their reasoning traces, thereby guiding subsequent reasoning steps. We employed VoT for multi-hop spatial reasoning tasks, including natural language navigation, visual navigation, and visual tiling in 2D grid worlds. Experimental results demonstrated that VoT significantly enhances the spatial reasoning abilities of LLMs. Notably, VoT outperformed existing multimodal large language models (MLLMs) in these tasks. While VoT works surprisingly well on LLMs, the ability to generate mental images to facilitate spatial reasoning resembles the mind's eye process, suggesting its potential viability in MLLMs.

The advancement of large language models has significantly improved natural language processing. However, challenges such as jailbreaks (prompt injections that cause an LLM to follow instructions contrary to its intended use), hallucinations (generating incorrect or misleading information), and comprehension errors remain prevalent. In this report, we present a comparative analysis of the performance of fifteen distinct models, with each model undergoing a standardized test comprising 38 queries across three key metrics: jailbreaks, hallucinations, and comprehension errors. The models are assessed based on the total occurrences of jailbreaks, hallucinations, and comprehension errors. Our work exposes these models' inherent vulnerabilities and challenges the notion of human-level language comprehension of these models. We have empirically analysed the impact of non-standard Unicode characters on LLMs and their safeguarding mechanisms on the best-performing LLMs, including GPT-4, Gemini 1.5 Pro, LlaMA-3-70B, and Claude 3 Opus. By incorporating alphanumeric symbols from Unicode outside the standard Latin block and variants of characters in other languages, we observed a reduction in the efficacy of guardrails implemented through Reinforcement Learning Human Feedback (RLHF). Consequently, these models exhibit heightened vulnerability to content policy breaches and prompt leakage. Our study also suggests a need to incorporate non-standard Unicode text in LLM training data to enhance the capabilities of these models.

Since their inception, programming languages have trended towards greater readability and lower barriers for programmers. Following this trend, natural language can be a promising type of programming language that provides great flexibility and usability and helps towards the democracy of programming. However, the inherent vagueness, ambiguity, and verbosity of natural language pose significant challenges in developing an interpreter that can accurately understand the programming logic and execute instructions written in natural language. Fortunately, recent advancements in Large Language Models (LLMs) have demonstrated remarkable proficiency in interpreting complex natural language. Inspired by this, we develop a novel system for Code Representation and Execution (CoRE), which employs LLM as interpreter to interpret and execute natural language instructions. The proposed system unifies natural language programming, pseudo-code programming, and flow programming under the same representation for constructing language agents, while LLM serves as the interpreter to interpret and execute the agent programs. In this paper, we begin with defining the programming syntax that structures natural language instructions logically. During the execution, we incorporate external memory to minimize redundancy. Furthermore, we equip the designed interpreter with the capability to invoke external tools, compensating for the limitations of LLM in specialized domains or when accessing real-time information. This work is open-source at //github.com/agiresearch/CoRE, //github.com/agiresearch/OpenAGI, and //github.com/agiresearch/AIOS.

Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.

Many natural language processing tasks solely rely on sparse dependencies between a few tokens in a sentence. Soft attention mechanisms show promising performance in modeling local/global dependencies by soft probabilities between every two tokens, but they are not effective and efficient when applied to long sentences. By contrast, hard attention mechanisms directly select a subset of tokens but are difficult and inefficient to train due to their combinatorial nature. In this paper, we integrate both soft and hard attention into one context fusion model, "reinforced self-attention (ReSA)", for the mutual benefit of each other. In ReSA, a hard attention trims a sequence for a soft self-attention to process, while the soft attention feeds reward signals back to facilitate the training of the hard one. For this purpose, we develop a novel hard attention called "reinforced sequence sampling (RSS)", selecting tokens in parallel and trained via policy gradient. Using two RSS modules, ReSA efficiently extracts the sparse dependencies between each pair of selected tokens. We finally propose an RNN/CNN-free sentence-encoding model, "reinforced self-attention network (ReSAN)", solely based on ReSA. It achieves state-of-the-art performance on both Stanford Natural Language Inference (SNLI) and Sentences Involving Compositional Knowledge (SICK) datasets.

北京阿比特科技有限公司