This paper argues that the symmetrisability condition in Tyler(1981) is not necessary to establish asymptotic inference procedures for eigenvectors. We establish distribution theory for a Wald and t-test for full-vector and individual coefficient hypotheses, respectively. Our test statistics originate from eigenprojections of non-symmetric matrices. Representing projections as a mapping from the underlying matrix to its spectral data, we find derivatives through analytic perturbation theory. These results demonstrate how the analytic perturbation theory of Sun(1991) is a useful tool in multivariate statistics and are of independent interest. As an application, we define confidence sets for Bonacich centralities estimated from adjacency matrices induced by directed graphs.
When dealing with time series data, causal inference methods often employ structural vector autoregressive (SVAR) processes to model time-evolving random systems. In this work, we rephrase recursive SVAR processes with possible latent component processes as a linear Structural Causal Model (SCM) of stochastic processes on a simple causal graph, the \emph{process graph}, that models every process as a single node. Using this reformulation, we generalise Wright's well-known path-rule for linear Gaussian SCMs to the newly introduced process SCMs and we express the auto-covariance sequence of an SVAR process by means of a generalised trek-rule. Employing the Fourier-Transformation, we derive compact expressions for causal effects in the frequency domain that allow us to efficiently visualise the causal interactions in a multivariate SVAR process. Finally, we observe that the process graph can be used to formulate graphical criteria for identifying causal effects and to derive algebraic relations with which these frequency domain causal effects can be recovered from the observed spectral density.
In this paper, we propose methods for discovering semantic differences in words appearing in two corpora based on the norms of contextualized word vectors. The key idea is that the coverage of meanings is reflected in the norm of its mean word vector. The proposed methods do not require the assumptions concerning words and corpora for comparison that the previous methods do. All they require are to compute the mean vector of contextualized word vectors and its norm for each word type. Nevertheless, they are (i) robust for the skew in corpus size; (ii) capable of detecting semantic differences in infrequent words; and (iii) effective in pinpointing word instances that have a meaning missing in one of the two corpora for comparison. We show these advantages for native and non-native English corpora and also for historical corpora.
Edge networks call for communication efficient (low overhead) and robust distributed optimization (DO) algorithms. These are, in fact, desirable qualities for DO frameworks, such as federated edge learning techniques, in the presence of data and system heterogeneity, and in scenarios where internode communication is the main bottleneck. Although computationally demanding, Newton-type (NT) methods have been recently advocated as enablers of robust convergence rates in challenging DO problems where edge devices have sufficient computational power. Along these lines, in this work we propose Q-SHED, an original NT algorithm for DO featuring a novel bit-allocation scheme based on incremental Hessian eigenvectors quantization. The proposed technique is integrated with the recent SHED algorithm, from which it inherits appealing features like the small number of required Hessian computations, while being bandwidth-versatile at a bit-resolution level. Our empirical evaluation against competing approaches shows that Q-SHED can reduce by up to 60% the number of communication rounds required for convergence.
Generalized approximate message passing (GAMP) is a computationally efficient algorithm for estimating an unknown signal $w_0\in\mathbb{R}^N$ from a random linear measurement $y= Xw_0 + \epsilon\in\mathbb{R}^M$, where $X\in\mathbb{R}^{M\times N}$ is a known measurement matrix and $\epsilon$ is the noise vector. The salient feature of GAMP is that it can provide an unbiased estimator $\hat{r}^{\rm G}\sim\mathcal{N}(w_0, \hat{s}^2I_N)$, which can be used for various hypothesis-testing methods. In this study, we consider the bootstrap average of an unbiased estimator of GAMP for the elastic net. By numerically analyzing the state evolution of \emph{approximate message passing with resampling}, which has been proposed for computing bootstrap statistics of the elastic net estimator, we investigate when the bootstrap averaging reduces the variance of the unbiased estimator and the effect of optimizing the size of each bootstrap sample and hyperparameter of the elastic net regularization in the asymptotic setting $M, N\to\infty, M/N\to\alpha\in(0,\infty)$. The results indicate that bootstrap averaging effectively reduces the variance of the unbiased estimator when the actual data generation process is inconsistent with the sparsity assumption of the regularization and the sample size is small. Furthermore, we find that when $w_0$ is less sparse, and the data size is small, the system undergoes a phase transition. The phase transition indicates the existence of the region where the ensemble average of unbiased estimators of GAMP for the elastic net norm minimization problem yields the unbiased estimator with the minimum variance.
In this work, we focus on the Bipartite Stochastic Block Model (BiSBM), a popular model for bipartite graphs with a community structure. We consider the high dimensional setting where the number $n_1$ of type I nodes is far smaller than the number $n_2$ of type II nodes. The recent work of Braun and Tyagi (2022) established a sufficient and necessary condition on the sparsity level $p_{max}$ of the bipartite graph to be able to recover the latent partition of type I nodes. They proposed an iterative method that extends the one proposed by Ndaoud et al. (2022) to achieve this goal. Their method requires a good enough initialization, usually obtained by a spectral method, but empirical results showed that the refinement algorithm doesn't improve much the performance of the spectral method. This suggests that the spectral achieves exact recovery in the same regime as the refinement method. We show that it is indeed the case by providing new entrywise bounds on the eigenvectors of the similarity matrix used by the spectral method. Our analysis extend the framework of Lei (2019) that only applies to symmetric matrices with limited dependencies. As an important technical step, we also derive an improved concentration inequality for similarity matrices.
We consider problems of minimizing functionals $\mathcal{F}$ of probability measures on the Euclidean space. To propose an accelerated gradient descent algorithm for such problems, we consider gradient flow of transport maps that give push-forward measures of an initial measure. Then we propose a deterministic accelerated algorithm by extending Nesterov's acceleration technique with momentum. This algorithm do not based on the Wasserstein geometry. Furthermore, to estimate the convergence rate of the accelerated algorithm, we introduce new convexity and smoothness for $\mathcal{F}$ based on transport maps. As a result, we can show that the accelerated algorithm converges faster than a normal gradient descent algorithm. Numerical experiments support this theoretical result.
Matrix recovery from sparse observations is an extensively studied topic emerging in various applications, such as recommendation system and signal processing, which includes the matrix completion and compressed sensing models as special cases. In this work we propose a general framework for dynamic matrix recovery of low-rank matrices that evolve smoothly over time. We start from the setting that the observations are independent across time, then extend to the setting that both the design matrix and noise possess certain temporal correlation via modified concentration inequalities. By pooling neighboring observations, we obtain sharp estimation error bounds of both settings, showing the influence of the underlying smoothness, the dependence and effective samples. We propose a dynamic fast iterative shrinkage thresholding algorithm that is computationally efficient, and characterize the interplay between algorithmic and statistical convergence. Simulated and real data examples are provided to support such findings.
In neural networks, task-relevant information is represented jointly by groups of neurons. However, the specific way in which this mutual information about the classification label is distributed among the individual neurons is not well understood: While parts of it may only be obtainable from specific single neurons, other parts are carried redundantly or synergistically by multiple neurons. We show how Partial Information Decomposition (PID), a recent extension of information theory, can disentangle these different contributions. From this, we introduce the measure of "Representational Complexity", which quantifies the difficulty of accessing information spread across multiple neurons. We show how this complexity is directly computable for smaller layers. For larger layers, we propose subsampling and coarse-graining procedures and prove corresponding bounds on the latter. Empirically, for quantized deep neural networks solving the MNIST and CIFAR10 tasks, we observe that representational complexity decreases both through successive hidden layers and over training, and compare the results to related measures. Overall, we propose representational complexity as a principled and interpretable summary statistic for analyzing the structure and evolution of neural representations and complex systems in general.
Transportation of probability measures underlies many core tasks in statistics and machine learning, from variational inference to generative modeling. A typical goal is to represent a target probability measure of interest as the push-forward of a tractable source measure through a learned map. We present a new construction of such a transport map, given the ability to evaluate the score of the target distribution. Specifically, we characterize the map as a zero of an infinite-dimensional score-residual operator and derive a Newton-type method for iteratively constructing such a zero. We prove convergence of these iterations by invoking classical elliptic regularity theory for partial differential equations (PDE) and show that this construction enjoys rapid convergence, under smoothness assumptions on the target score. A key element of our approach is a generalization of the elementary Newton method to infinite-dimensional operators, other forms of which have appeared in nonlinear PDE and in dynamical systems. Our Newton construction, while developed in a functional setting, also suggests new iterative algorithms for approximating transport maps.
In 1954, Alston S. Householder published Principles of Numerical Analysis, one of the first modern treatments on matrix decomposition that favored a (block) LU decomposition-the factorization of a matrix into the product of lower and upper triangular matrices. And now, matrix decomposition has become a core technology in machine learning, largely due to the development of the back propagation algorithm in fitting a neural network. The sole aim of this survey is to give a self-contained introduction to concepts and mathematical tools in numerical linear algebra and matrix analysis in order to seamlessly introduce matrix decomposition techniques and their applications in subsequent sections. However, we clearly realize our inability to cover all the useful and interesting results concerning matrix decomposition and given the paucity of scope to present this discussion, e.g., the separated analysis of the Euclidean space, Hermitian space, Hilbert space, and things in the complex domain. We refer the reader to literature in the field of linear algebra for a more detailed introduction to the related fields.