亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

To combat the HIV/AIDS pandemic effectively, targeted interventions among certain key populations play a critical role. Examples of such key populations include sex workers, people who inject drugs, and men who have sex with men. While having accurate estimates for the size of these key populations is important, any attempt to directly contact or count members of these populations is difficult. As a result, indirect methods are used to produce size estimates. Multiple approaches for estimating the size of such populations have been suggested but often give conflicting results. It is therefore necessary to have a principled way to combine and reconcile these estimates. To this end, we present a Bayesian hierarchical model for estimating the size of key populations that combines multiple estimates from different sources of information. The proposed model makes use of multiple years of data and explicitly models the systematic error in the data sources used. We use the model to estimate the size of people who inject drugs in Ukraine. We evaluate the appropriateness of the model and compare the contribution of each data source to the final estimates.

相關內容

Dynamic treatment regimes (DTRs) consist of a sequence of decision rules, one per stage of intervention, that finds effective treatments for individual patients according to patient information history. DTRs can be estimated from models which include the interaction between treatment and a small number of covariates which are often chosen a priori. However, with increasingly large and complex data being collected, it is difficult to know which prognostic factors might be relevant in the treatment rule. Therefore, a more data-driven approach of selecting these covariates might improve the estimated decision rules and simplify models to make them easier to interpret. We propose a variable selection method for DTR estimation using penalized dynamic weighted least squares. Our method has the strong heredity property, that is, an interaction term can be included in the model only if the corresponding main terms have also been selected. Through simulations, we show our method has both the double robustness property and the oracle property, and the newly proposed methods compare favorably with other variable selection approaches.

We consider the estimation of densities in multiple subpopulations, where the available sample size in each subpopulation greatly varies. This problem occurs in epidemiology, for example, where different diseases may share similar pathogenic mechanism but differ in their prevalence. Without specifying a parametric form, our proposed method pools information from the population and estimate the density in each subpopulation in a data-driven fashion. Drawing from functional data analysis, low-dimensional approximating density families in the form of exponential families are constructed from the principal modes of variation in the log-densities. Subpopulation densities are subsequently fitted in the approximating families based on likelihood principles and shrinkage. The approximating families increase in their flexibility as the number of components increases and can approximate arbitrary infinite-dimensional densities. We also derive convergence results of the density estimates with discrete observations. The proposed methods are shown to be interpretable and efficient in simulation as well as applications to electronic medical record and rainfall data.

Given a function $u\in L^2=L^2(D,\mu)$, where $D\subset \mathbb R^d$ and $\mu$ is a measure on $D$, and a linear subspace $V_n\subset L^2$ of dimension $n$, we show that near-best approximation of $u$ in $V_n$ can be computed from a near-optimal budget of $Cn$ pointwise evaluations of $u$, with $C>1$ a universal constant. The sampling points are drawn according to some random distribution, the approximation is computed by a weighted least-squares method, and the error is assessed in expected $L^2$ norm. This result improves on the results in [6,8] which require a sampling budget that is sub-optimal by a logarithmic factor, thanks to a sparsification strategy introduced in [17,18]. As a consequence, we obtain for any compact class $\mathcal K\subset L^2$ that the sampling number $\rho_{Cn}^{\rm rand}(\mathcal K)_{L^2}$ in the randomized setting is dominated by the Kolmogorov $n$-width $d_n(\mathcal K)_{L^2}$. While our result shows the existence of a randomized sampling with such near-optimal properties, we discuss remaining issues concerning its generation by a computationally efficient algorithm.

One factor of success in software development companies is their ability to deliver good quality products, fast. For this, they need to improve their software development practices. We work with a medium-sized company modernizing its development practices. The company introduced several practices recommended in agile development. If the benefits of these practices are well documented, the impact of such changes on the developers is less well known. We follow this modernization before and during the COVID-19 outbreak. This paper presents an empirical study of the perceived benefit and drawback of these practices as well as the impact of COVID-19 on the company's employees. One of the conclusions, is the additional difficulties created by obsolete technologies to adapt the technology itself and the development practices it encourages to modern standards.

A central topic in functional data analysis is how to design an optimaldecision rule, based on training samples, to classify a data function. We exploit the optimal classification problem when data functions are Gaussian processes. Sharp nonasymptotic convergence rates for minimax excess mis-classification risk are derived in both settings that data functions are fully observed and discretely observed. We explore two easily implementable classifiers based on discriminant analysis and deep neural network, respectively, which are both proven to achieve optimality in Gaussian setting. Our deepneural network classifier is new in literature which demonstrates outstanding performance even when data functions are non-Gaussian. In case of discretely observed data, we discover a novel critical sampling frequency thatgoverns the sharp convergence rates. The proposed classifiers perform favorably in finite-sample applications, as we demonstrate through comparisonswith other functional classifiers in simulations and one real data application.

We consider the problem of correctly identifying the mode of a discrete distribution $\mathcal{P}$ with sufficiently high probability by observing a sequence of i.i.d. samples drawn according to $\mathcal{P}$. This problem reduces to the estimation of a single parameter when $\mathcal{P}$ has a support set of size $K = 2$. Noting the efficiency of prior-posterior-ratio (PPR) martingale confidence sequences for handling this special case, we propose a generalisation to mode estimation, in which $\mathcal{P}$ may take $K \geq 2$ values. We observe that the "one-versus-one" principle yields a more efficient generalisation than the "one-versus-rest" alternative. Our resulting stopping rule, denoted PPR-ME, is optimal in its sample complexity up to a logarithmic factor. Moreover, PPR-ME empirically outperforms several other competing approaches for mode estimation. We demonstrate the gains offered by PPR-ME in two practical applications: (1) sample-based forecasting of the winner in indirect election systems, and (2) efficient verification of smart contracts in permissionless blockchains.

Leveraging biased click data for optimizing learning to rank systems has been a popular approach in information retrieval. Because click data is often noisy and biased, a variety of methods have been proposed to construct unbiased learning to rank (ULTR) algorithms for the learning of unbiased ranking models. Among them, automatic unbiased learning to rank (AutoULTR) algorithms that jointly learn user bias models (i.e., propensity models) with unbiased rankers have received a lot of attention due to their superior performance and low deployment cost in practice. Despite their differences in theories and algorithm design, existing studies on ULTR usually use uni-variate ranking functions to score each document or result independently. On the other hand, recent advances in context-aware learning-to-rank models have shown that multivariate scoring functions, which read multiple documents together and predict their ranking scores jointly, are more powerful than uni-variate ranking functions in ranking tasks with human-annotated relevance labels. Whether such superior performance would hold in ULTR with noisy data, however, is mostly unknown. In this paper, we investigate existing multivariate scoring functions and AutoULTR algorithms in theory and prove that permutation invariance is a crucial factor that determines whether a context-aware learning-to-rank model could be applied to existing AutoULTR framework. Our experiments with synthetic clicks on two large-scale benchmark datasets show that AutoULTR models with permutation-invariant multivariate scoring functions significantly outperform those with uni-variate scoring functions and permutation-variant multivariate scoring functions.

Matter evolved under influence of gravity from minuscule density fluctuations. Non-perturbative structure formed hierarchically over all scales, and developed non-Gaussian features in the Universe, known as the Cosmic Web. To fully understand the structure formation of the Universe is one of the holy grails of modern astrophysics. Astrophysicists survey large volumes of the Universe and employ a large ensemble of computer simulations to compare with the observed data in order to extract the full information of our own Universe. However, to evolve trillions of galaxies over billions of years even with the simplest physics is a daunting task. We build a deep neural network, the Deep Density Displacement Model (hereafter D$^3$M), to predict the non-linear structure formation of the Universe from simple linear perturbation theory. Our extensive analysis, demonstrates that D$^3$M outperforms the second order perturbation theory (hereafter 2LPT), the commonly used fast approximate simulation method, in point-wise comparison, 2-point correlation, and 3-point correlation. We also show that D$^3$M is able to accurately extrapolate far beyond its training data, and predict structure formation for significantly different cosmological parameters. Our study proves, for the first time, that deep learning is a practical and accurate alternative to approximate simulations of the gravitational structure formation of the Universe.

We propose a new method of estimation in topic models, that is not a variation on the existing simplex finding algorithms, and that estimates the number of topics K from the observed data. We derive new finite sample minimax lower bounds for the estimation of A, as well as new upper bounds for our proposed estimator. We describe the scenarios where our estimator is minimax adaptive. Our finite sample analysis is valid for any number of documents (n), individual document length (N_i), dictionary size (p) and number of topics (K), and both p and K are allowed to increase with n, a situation not handled well by previous analyses. We complement our theoretical results with a detailed simulation study. We illustrate that the new algorithm is faster and more accurate than the current ones, although we start out with a computational and theoretical disadvantage of not knowing the correct number of topics K, while we provide the competing methods with the correct value in our simulations.

This paper describes a suite of algorithms for constructing low-rank approximations of an input matrix from a random linear image of the matrix, called a sketch. These methods can preserve structural properties of the input matrix, such as positive-semidefiniteness, and they can produce approximations with a user-specified rank. The algorithms are simple, accurate, numerically stable, and provably correct. Moreover, each method is accompanied by an informative error bound that allows users to select parameters a priori to achieve a given approximation quality. These claims are supported by numerical experiments with real and synthetic data.

北京阿比特科技有限公司