Given an increasing sequence of integers $x_1,\ldots,x_n$ from a universe $\{0,\ldots,u-1\}$, the monotone minimal perfect hash function (MMPHF) for this sequence is a data structure that answers the following rank queries: $rank(x) = i$ if $x = x_i$, for $i\in \{1,\ldots,n\}$, and $rank(x)$ is arbitrary otherwise. Assadi, Farach-Colton, and Kuszmaul recently presented at SODA'23 a proof of the lower bound $\Omega(n \min\{\log\log\log u, \log n\})$ for the bits of space required by MMPHF, provided $u \ge n 2^{2^{\sqrt{\log\log n}}}$, which is tight since there is a data structure for MMPHF that attains this space bound (and answers the queries in $O(\log u)$ time). In this paper, we close the remaining gap by proving that, for $u \ge (1+\epsilon)n$, where $\epsilon > 0$ is any constant, the tight lower bound is $\Omega(n \min\{\log\log\log \frac{u}{n}, \log n\})$, which is also attainable; we observe that, for all reasonable cases when $n < u < (1+\epsilon)n$, known facts imply tight bounds, which virtually settles the problem. Along the way we substantially simplify the proof of Assadi et al. replacing a part of their heavy combinatorial machinery by trivial observations. However, an important part of the proof still remains complicated. This part of our paper repeats arguments of Assadi et al. and is not novel. Nevertheless, we include it, for completeness, offering a somewhat different perspective on these arguments.
Given some binary matrix $M$, suppose we are presented with the collection of its rows and columns in independent arbitrary orderings. From this information, are we able to recover the unique original orderings and matrix? We present an algorithm that identifies whether there is a unique ordering associated with a set of rows and columns, and outputs either the unique correct orderings for the rows and columns or the full collection of all valid orderings and valid matrices. We show that there is a constant $c > 0$ such that the algorithm terminates in $O(n^2)$ time with high probability and in expectation for random $n \times n$ binary matrices with i.i.d.\ Bernoulli $(p)$ entries $(m_{ij})_{ij=1}^n$ such that $\frac{c\log^2(n)}{n(\log\log(n))^2} \leq p \leq \frac{1}{2}$.
We investigate the consequence of two Lip$(\gamma)$ functions, in the sense of Stein, being close throughout a subset of their domain. A particular consequence of our results is the following. Given $K_0 > \varepsilon > 0$ and $\gamma > \eta > 0$ there is a constant $\delta = \delta(\gamma,\eta,\varepsilon,K_0) > 0$ for which the following is true. Let $\Sigma \subset \mathbb{R}^d$ be closed and $f , h : \Sigma \to \mathbb{R}$ be Lip$(\gamma)$ functions whose Lip$(\gamma)$ norms are both bounded above by $K_0$. Suppose $B \subset \Sigma$ is closed and that $f$ and $h$ coincide throughout $B$. Then over the set of points in $\Sigma$ whose distance to $B$ is at most $\delta$ we have that the Lip$(\eta)$ norm of the difference $f-h$ is bounded above by $\varepsilon$. More generally, we establish that this phenomenon remains valid in a less restrictive Banach space setting under the weaker hypothesis that the two Lip$(\gamma)$ functions $f$ and $h$ are only close in a pointwise sense throughout the closed subset $B$. We require only that the subset $\Sigma$ be closed; in particular, the case that $\Sigma$ is finite is covered by our results. The restriction that $\eta < \gamma$ is sharp in the sense that our result is false for $\eta := \gamma$.
We give a simple, greedy $O(n^{\omega+0.5})=O(n^{2.872})$-time algorithm to list-decode planted cliques in a semirandom model introduced in [CSV17] (following [FK01]) that succeeds whenever the size of the planted clique is $k\geq O(\sqrt{n} \log^2 n)$. In the model, the edges touching the vertices in the planted $k$-clique are drawn independently with probability $p=1/2$ while the edges not touching the planted clique are chosen by an adversary in response to the random choices. Our result shows that the computational threshold in the semirandom setting is within a $O(\log^2 n)$ factor of the information-theoretic one [Ste17] thus resolving an open question of Steinhardt. This threshold also essentially matches the conjectured computational threshold for the well-studied special case of fully random planted clique. All previous algorithms [CSV17, MMT20, BKS23] in this model are based on rather sophisticated rounding algorithms for entropy-constrained semidefinite programming relaxations and their sum-of-squares strengthenings and the best known guarantee is a $n^{O(1/\epsilon)}$-time algorithm to list-decode planted cliques of size $k \geq \tilde{O}(n^{1/2+\epsilon})$. In particular, the guarantee trivializes to quasi-polynomial time if the planted clique is of size $O(\sqrt{n} \operatorname{polylog} n)$. Our algorithm achieves an almost optimal guarantee with a surprisingly simple greedy algorithm. The prior state-of-the-art algorithmic result above is based on a reduction to certifying bounds on the size of unbalanced bicliques in random graphs -- closely related to certifying the restricted isometry property (RIP) of certain random matrices and known to be hard in the low-degree polynomial model. Our key idea is a new approach that relies on the truth of -- but not efficient certificates for -- RIP of a new class of matrices built from the input graphs.
The Gaussian splatting methods are getting popular. However, their loss function only contains the $\ell_1$ norm and the structural similarity between the rendered and input images, without considering the edges in these images. It is well-known that the edges in an image provide important information. Therefore, in this paper, we propose an Edge Guided Gaussian Splatting (EGGS) method that leverages the edges in the input images. More specifically, we give the edge region a higher weight than the flat region. With such edge guidance, the resulting Gaussian particles focus more on the edges instead of the flat regions. Moreover, such edge guidance does not crease the computation cost during the training and rendering stage. The experiments confirm that such simple edge-weighted loss function indeed improves about $1\sim2$ dB on several difference data sets. With simply plugging in the edge guidance, the proposed method can improve all Gaussian splatting methods in different scenarios, such as human head modeling, building 3D reconstruction, etc.
Given a simple weighted directed graph $G = (V, E, \omega)$ on $n$ vertices as well as two designated terminals $s, t\in V$, our goal is to compute the shortest path from $s$ to $t$ avoiding any pair of presumably failed edges $f_1, f_2\in E$, which is a natural generalization of the classical replacement path problem which considers single edge failures only. This dual failure replacement paths problem was recently studied by Vassilevska Williams, Woldeghebriel and Xu [FOCS 2022] who designed a cubic time algorithm for general weighted digraphs which is conditionally optimal; in the same paper, for unweighted graphs where $\omega \equiv 1$, the authors presented an algebraic algorithm with runtime $\tilde{O}(n^{2.9146})$, as well as a conditional lower bound of $n^{8/3-o(1)}$ against combinatorial algorithms. However, it was unknown in their work whether fast matrix multiplication is necessary for a subcubic runtime in unweighted digraphs. As our primary result, we present the first truly subcubic combinatorial algorithm for dual failure replacement paths in unweighted digraphs. Our runtime is $\tilde{O}(n^{3-1/18})$. Besides, we also study algebraic algorithms for digraphs with small integer edge weights from $\{-M, -M+1, \cdots, M-1, M\}$. As our secondary result, we obtained a runtime of $\tilde{O}(Mn^{2.8716})$, which is faster than the previous bound of $\tilde{O}(M^{2/3}n^{2.9144} + Mn^{2.8716})$ from [Vassilevska Williams, Woldeghebriela and Xu, 2022].
We bound the smoothed running time of the FLIP algorithm for local Max-Cut as a function of $\alpha$, the arboricity of the input graph. We show that, with high probability and in expectation, the following holds (where $n$ is the number of nodes and $\phi$ is the smoothing parameter): 1) When $\alpha = O(\log^{1-\delta} n)$ FLIP terminates in $\phi poly(n)$ iterations, where $\delta \in (0,1]$ is an arbitrarily small constant. Previous to our results the only graph families for which FLIP was known to achieve a smoothed polynomial running time were complete graphs and graphs with logarithmic maximum degree. 2) For arbitrary values of $\alpha$ we get a running time of $\phi n^{O(\frac{\alpha}{\log n} + \log \alpha)}$. This improves over the best known running time for general graphs of $\phi n^{O(\sqrt{ \log n })}$ for $\alpha = o(\log^{1.5} n)$. Specifically, when $\alpha = O(\log n)$ we get a significantly faster running time of $\phi n^{O(\log \log n)}$.
An $(m,n,R)$-de Bruijn covering array (dBCA) is a doubly periodic $M \times N$ array over an alphabet of size $q$ such that the set of all its $m \times n$ windows form a covering code with radius $R$. An upper bound of the smallest array area of an $(m,n,R)$-dBCA is provided using a probabilistic technique which is similar to the one that was used for an upper bound on the length of a de Bruijn covering sequence. A folding technique to construct a dBCA from a de Bruijn covering sequence or de Bruijn covering sequences code is presented. Several new constructions that yield shorter de Bruijn covering sequences and $(m,n,R)$-dBCAs with smaller areas are also provided. These constructions are mainly based on sequences derived from cyclic codes, self-dual sequences, primitive polynomials, an interleaving technique, folding, and mutual shifts of sequences with the same covering radius. Finally, constructions of de Bruijn covering sequences codes are also discussed.
We give a non-adaptive algorithm that makes $2^{\tilde{O}(\sqrt{k\log(1/\varepsilon_2 - \varepsilon_1)})}$ queries to a Boolean function $f:\{\pm 1\}^n \rightarrow \{\pm 1\}$ and distinguishes between $f$ being $\varepsilon_1$-close to some $k$-junta versus $\varepsilon_2$-far from every $k$-junta. At the heart of our algorithm is a local mean estimation procedure for Boolean functions that may be of independent interest. We complement our upper bound with a matching lower bound, improving a recent lower bound obtained by Chen et al. We thus obtain the first tight bounds for a natural property of Boolean functions in the tolerant testing model.
An additive code is an $\mathbb{F}_q$-linear subspace of $\mathbb{F}_{q^m}^n$ over $\mathbb{F}_{q^m}$, which is not a linear subspace over $\mathbb{F}_{q^m}$. Linear complementary pairs(LCP) of codes have important roles in cryptography, such as increasing the speed and capacity of digital communication and strengthening security by improving the encryption necessities to resist cryptanalytic attacks. This paper studies an algebraic structure of additive complementary pairs (ACP) of codes over $\mathbb{F}_{q^m}$. Further, we characterize an ACP of codes in analogous generator matrices and parity check matrices. Additionally, we identify a necessary condition for an ACP of codes. Besides, we present some constructions of an ACP of codes over $\mathbb{F}_{q^m}$ from LCP codes over $\mathbb{F}_{q^m}$ and also from an LCP of codes over $\mathbb{F}_q$. Finally, we study the constacyclic ACP of codes over $\mathbb{F}_{q^m}$ and the counting of the constacyclic ACP of codes. As an application of our study, we consider a class of quantum codes called Entanglement Assisted Quantum Error Correcting Code (EAQEC codes). As a consequence, we derive some EAQEC codes.
We introduce the natural notion of a matching frame in a $2$-dimensional string. A matching frame in a $2$-dimensional $n\times m$ string $M$, is a rectangle such that the strings written on the horizontal sides of the rectangle are identical, and so are the strings written on the vertical sides of the rectangle. Formally, a matching frame in $M$ is a tuple $(u,d,\ell,r)$ such that $M[u][\ell ..r] = M[d][\ell ..r]$ and $M[u..d][\ell] = M[u..d][r]$. In this paper, we present an algorithm for finding the maximum perimeter matching frame in a matrix $M$ in $\tilde{O}(n^{2.5})$ time (assuming $n \ge m)$. Additionally, for every constant $\epsilon> 0$ we present a near-linear $(1-\epsilon)$-approximation algorithm for the maximum perimeter of a matching frame. In the development of the aforementioned algorithms, we introduce inventive technical elements and uncover distinctive structural properties that we believe will captivate the curiosity of the community.