The number of disclosed vulnerabilities has been steadily increasing over the years. At the same time, organizations face significant challenges patching their systems, leading to a need to prioritize vulnerability remediation in order to reduce the risk of attacks. Unfortunately, existing vulnerability scoring systems are either vendor-specific, proprietary, or are only commercially available. Moreover, these and other prioritization strategies based on vulnerability severity are poor predictors of actual vulnerability exploitation because they do not incorporate new information that might impact the likelihood of exploitation. In this paper we present the efforts behind building a Special Interest Group (SIG) that seeks to develop a completely data-driven exploit scoring system that produces scores for all known vulnerabilities, that is freely available, and which adapts to new information. The Exploit Prediction Scoring System (EPSS) SIG consists of more than 170 experts from around the world and across all industries, providing crowd-sourced expertise and feedback. Based on these collective insights, we describe the design decisions and trade-offs that lead to the development of the next version of EPSS. This new machine learning model provides an 82\% performance improvement over past models in distinguishing vulnerabilities that are exploited in the wild and thus may be prioritized for remediation.
Multi-scale representations are crucial for semantic segmentation. The community has witnessed the flourish of semantic segmentation convolutional neural networks (CNN) exploiting multi-scale contextual information. Motivated by that the vision transformer (ViT) is powerful in image classification, some semantic segmentation ViTs are recently proposed, most of them attaining impressive results but at a cost of computational economy. In this paper, we succeed in introducing multi-scale representations into semantic segmentation ViT via window attention mechanism and further improves the performance and efficiency. To this end, we introduce large window attention which allows the local window to query a larger area of context window at only a little computation overhead. By regulating the ratio of the context area to the query area, we enable the $\textit{large window attention}$ to capture the contextual information at multiple scales. Moreover, the framework of spatial pyramid pooling is adopted to collaborate with $\textit{the large window attention}$, which presents a novel decoder named $\textbf{la}$rge $\textbf{win}$dow attention spatial pyramid pooling (LawinASPP) for semantic segmentation ViT. Our resulting ViT, Lawin Transformer, is composed of an efficient hierachical vision transformer (HVT) as encoder and a LawinASPP as decoder. The empirical results demonstrate that Lawin Transformer offers an improved efficiency compared to the existing method. Lawin Transformer further sets new state-of-the-art performance on Cityscapes (84.4% mIoU), ADE20K (56.2% mIoU) and COCO-Stuff datasets. The code will be released at //github.com/yan-hao-tian/lawin
Automatic segmentation of knee bony anatomy is essential in orthopedics, and it has been around for several years in both pre-operative and post-operative settings. While deep learning algorithms have demonstrated exceptional performance in medical image analysis, the assessment of fairness and potential biases within these models remains limited. This study aims to revisit deep learning-powered knee-bony anatomy segmentation using plain radiographs to uncover visible gender and racial biases. The current contribution offers the potential to advance our understanding of biases, and it provides practical insights for researchers and practitioners in medical imaging. The proposed mitigation strategies mitigate gender and racial biases, ensuring fair and unbiased segmentation results. Furthermore, this work promotes equal access to accurate diagnoses and treatment outcomes for diverse patient populations, fostering equitable and inclusive healthcare provision.
The lack of ethnic diversity in data has been a limiting factor of face recognition techniques in the literature. This is particularly the case for children where data samples are scarce and presents a challenge when seeking to adapt machine vision algorithms that are trained on adult data to work on children. This work proposes the utilization of image-to-image transformation to synthesize data of different races and thus adjust the ethnicity of children's face data. We consider ethnicity as a style and compare three different Image-to-Image neural network based methods, specifically pix2pix, CycleGAN, and CUT networks to implement Caucasian child data and Asian child data conversion. Experimental validation results on synthetic data demonstrate the feasibility of using image-to-image transformation methods to generate various synthetic child data samples with broader ethnic diversity.
Many sets of ethics principles for responsible AI have been proposed to allay concerns about misuse and abuse of AI/ML systems. The underlying aspects of such sets of principles include privacy, accuracy, fairness, robustness, explainability, and transparency. However, there are potential tensions between these aspects that pose difficulties for AI/ML developers seeking to follow these principles. For example, increasing the accuracy of an AI/ML system may reduce its explainability. As part of the ongoing effort to operationalise the principles into practice, in this work we compile and discuss a catalogue of 10 notable tensions, trade-offs and other interactions between the underlying aspects. We primarily focus on two-sided interactions, drawing on support spread across a diverse literature. This catalogue can be helpful in raising awareness of the possible interactions between aspects of ethics principles, as well as facilitating well-supported judgements by the designers and developers of AI/ML systems.
Humanitarian organizations provide aid to people in need. To use their limited budget efficiently, their distribution processes must ensure that legitimate recipients cannot receive more aid than they are entitled to. Thus, it is essential that recipients can register at most once per aid program. Taking the International Committee of the Red Cross's aid distribution registration process as a use case, we identify the requirements to detect double registration without creating new risks for aid recipients. We then design Janus, which combines privacy-enhancing technologies with biometrics to prevent double registration in a safe manner. Janus does not create plaintext biometric databases and reveals only one bit of information at registration time (whether the user registering is present in the database or not). We implement and evaluate three instantiations of Janus based on secure multiparty computation, somewhat homomorphic encryption, and trusted execution environments. We demonstrate that they support the privacy, accuracy, and performance needs of humanitarian organizations. We compare Janus with existing alternatives and show it is the first system that provides the accuracy our scenario requires while providing strong protection.
Movable antennas (MAs) are a promising paradigm to enhance the spatial degrees of freedom of conventional multi-antenna systems by flexibly adapting the positions of the antenna elements within a given transmit area. In this paper, we model the motion of the MA elements as discrete movements and study the corresponding resource allocation problem for MA-enabled multiuser multiple-input single-output (MISO) communication systems. Specifically, we jointly optimize the beamforming and the MA positions at the base station (BS) for the minimization of the total transmit power while guaranteeing the minimum required signal-to-interference-plus-noise ratio (SINR) of each individual user. To obtain the globally optimal solution to the formulated resource allocation problem, we develop an iterative algorithm capitalizing on the generalized Bender's decomposition with guaranteed convergence. Our numerical results demonstrate that the proposed MA-enabled communication system can significantly reduce the BS transmit power and the number of antenna elements needed to achieve a desired performance compared to state-of-the-art techniques, such as antenna selection. Furthermore, we observe that refining the step size of the MA motion driver improves performance at the expense of a higher computational complexity.
Conventional detectors suffer from performance degradation when dealing with long-tailed data due to a classification bias towards the majority head categories. In this paper, we contend that the learning bias originates from two factors: 1) the unequal competition arising from the imbalanced distribution of foreground categories, and 2) the lack of sample diversity in tail categories. To tackle these issues, we introduce a unified framework called BAlanced CLassification (BACL), which enables adaptive rectification of inequalities caused by disparities in category distribution and dynamic intensification of sample diversities in a synchronized manner. Specifically, a novel foreground classification balance loss (FCBL) is developed to ameliorate the domination of head categories and shift attention to difficult-to-differentiate categories by introducing pairwise class-aware margins and auto-adjusted weight terms, respectively. This loss prevents the over-suppression of tail categories in the context of unequal competition. Moreover, we propose a dynamic feature hallucination module (FHM), which enhances the representation of tail categories in the feature space by synthesizing hallucinated samples to introduce additional data variances. In this divide-and-conquer approach, BACL sets a new state-of-the-art on the challenging LVIS benchmark with a decoupled training pipeline, surpassing vanilla Faster R-CNN with ResNet-50-FPN by 5.8% AP and 16.1% AP for overall and tail categories. Extensive experiments demonstrate that BACL consistently achieves performance improvements across various datasets with different backbones and architectures. Code and models are available at //github.com/Tianhao-Qi/BACL.
Cross-corpus speech emotion recognition (SER) seeks to generalize the ability of inferring speech emotion from a well-labeled corpus to an unlabeled one, which is a rather challenging task due to the significant discrepancy between two corpora. Existing methods, typically based on unsupervised domain adaptation (UDA), struggle to learn corpus-invariant features by global distribution alignment, but unfortunately, the resulting features are mixed with corpus-specific features or not class-discriminative. To tackle these challenges, we propose a novel Emotion Decoupling aNd Alignment learning framework (EMO-DNA) for cross-corpus SER, a novel UDA method to learn emotion-relevant corpus-invariant features. The novelties of EMO-DNA are two-fold: contrastive emotion decoupling and dual-level emotion alignment. On one hand, our contrastive emotion decoupling achieves decoupling learning via a contrastive decoupling loss to strengthen the separability of emotion-relevant features from corpus-specific ones. On the other hand, our dual-level emotion alignment introduces an adaptive threshold pseudo-labeling to select confident target samples for class-level alignment, and performs corpus-level alignment to jointly guide model for learning class-discriminative corpus-invariant features across corpora. Extensive experimental results demonstrate the superior performance of EMO-DNA over the state-of-the-art methods in several cross-corpus scenarios. Source code is available at //github.com/Jiaxin-Ye/Emo-DNA.
Quality of Service (QoS) prediction is an essential task in recommendation systems, where accurately predicting unknown QoS values can improve user satisfaction. However, existing QoS prediction techniques may perform poorly in the presence of noise data, such as fake location information or virtual gateways. In this paper, we propose the Probabilistic Deep Supervision Network (PDS-Net), a novel framework for QoS prediction that addresses this issue. PDS-Net utilizes a Gaussian-based probabilistic space to supervise intermediate layers and learns probability spaces for both known features and true labels. Moreover, PDS-Net employs a condition-based multitasking loss function to identify objects with noise data and applies supervision directly to deep features sampled from the probability space by optimizing the Kullback-Leibler distance between the probability space of these objects and the real-label probability space. Thus, PDS-Net effectively reduces errors resulting from the propagation of corrupted data, leading to more accurate QoS predictions. Experimental evaluations on two real-world QoS datasets demonstrate that the proposed PDS-Net outperforms state-of-the-art baselines, validating the effectiveness of our approach.
In recent years, Face Image Quality Assessment (FIQA) has become an indispensable part of the face recognition system to guarantee the stability and reliability of recognition performance in an unconstrained scenario. For this purpose, the FIQA method should consider both the intrinsic property and the recognizability of the face image. Most previous works aim to estimate the sample-wise embedding uncertainty or pair-wise similarity as the quality score, which only considers the information from partial intra-class. However, these methods ignore the valuable information from the inter-class, which is for estimating to the recognizability of face image. In this work, we argue that a high-quality face image should be similar to its intra-class samples and dissimilar to its inter-class samples. Thus, we propose a novel unsupervised FIQA method that incorporates Similarity Distribution Distance for Face Image Quality Assessment (SDD-FIQA). Our method generates quality pseudo-labels by calculating the Wasserstein Distance (WD) between the intra-class similarity distributions and inter-class similarity distributions. With these quality pseudo-labels, we are capable of training a regression network for quality prediction. Extensive experiments on benchmark datasets demonstrate that the proposed SDD-FIQA surpasses the state-of-the-arts by an impressive margin. Meanwhile, our method shows good generalization across different recognition systems.