亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Polymorphic types are an important feature in most strongly typed programming languages. They allow functions to be written in a way that can be used with different data types, while still enforcing the relationship and constraints between the values. However, programmers often find polymorphic types difficult to use and understand and tend to reason using concrete types. We propose GeckoGraph, a graphical notation for types. GeckoGraph aims to accompany traditional text-based type notation and to make reading, understanding, and comparing types easier. We conducted a large-scale human study using GeckoGraph compared to text-based type notation. To our knowledge, this is the largest controlled user study on functional programming ever conducted. The results of the study show that GeckoGraph helps improve programmers' ability to succeed in the programming tasks we designed, especially for novice programmers.

相關內容

Large language models (LLMs) have achieved impressive success across several fields, but their proficiency in understanding and resolving complex graph problems is less explored. To bridge this gap, we introduce GraphInstruct, a novel and comprehensive instruction-tuning dataset designed to equip language models with the ability to tackle a broad spectrum of graph problems using explicit reasoning paths. Utilizing GraphInstruct, we build GraphWiz, an open-source language model capable of resolving various graph problem types while generating clear reasoning processes. To enhance the model's capability and reliability, we incorporate the Direct Preference Optimization (DPO) framework into the graph problem-solving context. The enhanced model, GraphWiz-DPO, achieves an average accuracy of 65% across nine tasks with different complexity levels, surpassing GPT-4 which has an average accuracy of 43.8%. Moreover, our research delves into the delicate balance between training data volume and model performance, highlighting the potential for overfitting with increased data. We also explore the transferability of the model's reasoning ability across different graph tasks, indicating the model's adaptability and practical application potential. Our investigation offers a new blueprint and valuable insights for developing LLMs specialized in graph reasoning and problem-solving.

Multi-modal large language models (MLLMs) have achieved remarkable performance on objective multimodal perception tasks, but their ability to interpret subjective, emotionally nuanced multimodal content remains largely unexplored. Thus, it impedes their ability to effectively understand and react to the intricate emotions expressed by humans through multimodal media. To bridge this gap, we introduce EmoBench, the first comprehensive benchmark designed specifically to evaluate the emotional capabilities of MLLMs across five popular emotional tasks, using a diverse dataset of 287k images and videos paired with corresponding textual instructions. Meanwhile, we propose EmoLLM, a novel model for multimodal emotional understanding, incorporating with two core techniques. 1) Multi-perspective Visual Projection, it captures diverse emotional cues from visual data from multiple perspectives. 2) EmoPrompt, it guides MLLMs to reason about emotions in the correct direction. Experimental results demonstrate that EmoLLM significantly elevates multimodal emotional understanding performance, with an average improvement of 12.1% across multiple foundation models on EmoBench. Our work contributes to the advancement of MLLMs by facilitating a deeper and more nuanced comprehension of intricate human emotions, paving the way for the development of artificial emotional intelligence capabilities with wide-ranging applications in areas such as human-computer interaction, mental health support, and empathetic AI systems. Code, data, and model will be released.

Utilizing large language models (LLMs) for transforming natural language questions into SQL queries (text-to-SQL) is a promising yet challenging approach, particularly when applied to real-world databases with complex and extensive schemas. In particular, effectively incorporating data catalogs and database values for SQL generation remains an obstacle, leading to suboptimal solutions. We address this problem by proposing a new pipeline that effectively retrieves relevant data and context, selects an efficient schema, and synthesizes correct and efficient SQL queries. To increase retrieval precision, our pipeline introduces a hierarchical retrieval method leveraging model-generated keywords, locality-sensitive hashing indexing, and vector databases. Additionally, we have developed an adaptive schema pruning technique that adjusts based on the complexity of the problem and the model's context size. Our approach generalizes to both frontier proprietary models like GPT-4 and open-source models such as Llama-3-70B. Through a series of ablation studies, we demonstrate the effectiveness of each component of our pipeline and its impact on the end-to-end performance. Our method achieves new state-of-the-art performance on the cross-domain challenging BIRD dataset.

We consider the issue of calibration in large language models (LLM). Recent studies have found that common interventions such as instruction tuning often result in poorly calibrated LLMs. Although calibration is well-explored in traditional applications, calibrating LLMs is uniquely challenging. These challenges stem as much from the severe computational requirements of LLMs as from their versatility, which allows them to be applied to diverse tasks. Addressing these challenges, we propose THERMOMETER, a calibration approach tailored to LLMs. THERMOMETER learns an auxiliary model, given data from multiple tasks, for calibrating a LLM. It is computationally efficient, preserves the accuracy of the LLM, and produces better-calibrated responses for new tasks. Extensive empirical evaluations across various benchmarks demonstrate the effectiveness of the proposed method.

Natural language question answering (QA) over structured data sources such as tables and knowledge graphs (KGs) have been widely investigated, for example with Large Language Models (LLMs). The main solutions include question to formal query parsing and retrieval-based answer generation. However, current methods of the former often suffer from weak generalization, failing to dealing with multiple sources simultaneously, while the later is limited in trustfulness. In this paper, we propose UnifiedTQA, a trustful QA framework that can simultaneously support multiple types of structured data in a unified way. To this end, it adopts an LLM-friendly and unified knowledge representation method called Condition Graph (CG), and uses an LLM and demonstration-based two-level method for CG querying. For enhancement, it is also equipped with dynamic demonstration retrieval. We have evaluated UnifiedTQA with 5 benchmarks covering 3 types of structured data. It outperforms 2 existing unified structured data QA methods and in comparison with the baselines that are specific to a data type, it achieves state-of-the-art on 2 of them. Further more, we demonstrates potential of our method for more general QA tasks, QA over mixed structured data and QA across structured data.

Optimizing black-box functions is a fundamental problem in science and engineering. To solve this problem, many approaches learn a surrogate function that estimates the underlying objective from limited historical evaluations. Large Language Models (LLMs), with their strong pattern-matching capabilities via pretraining on vast amounts of data, stand out as a potential candidate for surrogate modeling. However, directly prompting a pretrained language model to produce predictions is not feasible in many scientific domains due to the scarcity of domain-specific data in the pretraining corpora and the challenges of articulating complex problems in natural language. In this work, we introduce LICO, a general-purpose model that extends arbitrary base LLMs for black-box optimization, with a particular application to the molecular domain. To achieve this, we equip the language model with a separate embedding layer and prediction layer, and train the model to perform in-context predictions on a diverse set of functions defined over the domain. Once trained, LICO can generalize to unseen molecule properties simply via in-context prompting. LICO achieves state-of-the-art performance on PMO, a challenging molecular optimization benchmark comprising over 20 objective functions.

Large language models (LLMs) have demonstrated impressive capabilities in natural language processing. However, their internal mechanisms are still unclear and this lack of transparency poses unwanted risks for downstream applications. Therefore, understanding and explaining these models is crucial for elucidating their behaviors, limitations, and social impacts. In this paper, we introduce a taxonomy of explainability techniques and provide a structured overview of methods for explaining Transformer-based language models. We categorize techniques based on the training paradigms of LLMs: traditional fine-tuning-based paradigm and prompting-based paradigm. For each paradigm, we summarize the goals and dominant approaches for generating local explanations of individual predictions and global explanations of overall model knowledge. We also discuss metrics for evaluating generated explanations, and discuss how explanations can be leveraged to debug models and improve performance. Lastly, we examine key challenges and emerging opportunities for explanation techniques in the era of LLMs in comparison to conventional machine learning models.

The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.

This paper presents Pix2Seq, a simple and generic framework for object detection. Unlike existing approaches that explicitly integrate prior knowledge about the task, we simply cast object detection as a language modeling task conditioned on the observed pixel inputs. Object descriptions (e.g., bounding boxes and class labels) are expressed as sequences of discrete tokens, and we train a neural net to perceive the image and generate the desired sequence. Our approach is based mainly on the intuition that if a neural net knows about where and what the objects are, we just need to teach it how to read them out. Beyond the use of task-specific data augmentations, our approach makes minimal assumptions about the task, yet it achieves competitive results on the challenging COCO dataset, compared to highly specialized and well optimized detection algorithms.

With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.

北京阿比特科技有限公司