亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Datalogo is an extension of Datalog that allows for aggregation and recursion over an arbitrary commutative semiring. Like Datalog, Datalogo programs can be evaluated via the natural iterative algorithm until a fixed point is reached. However unlike Datalog, the natural iterative evaluation of some Datalogo programs over some semirings may not converge. It is known that the commutative semirings for which the iterative evaluation of Datalogo programs is guaranteed to converge are exactly those semirings that are stable~\cite{Khamis0PSW22}. Previously, the best known upper bound on the number of iterations until convergence over $p$-stable semirings is $\sum_{i=1}^n (p+2)^i = \Theta(p^n)$ steps, where $n$ is (essentially) the output size. We establish that, in fact, the natural iterative evaluation of a Datalogoprogram over a $p$-stable semiring converges within a polynomial number of iterations. In particular our upper bound is $O( \sigma p n^2( n^2 \lg \lambda + \lg \sigma))$ where $\sigma$ is the number of elements in the semiring present in either the input databases or the Datalogo program, and $\lambda$ is the maximum number of terms in any product in the Datalogo program.

相關內容

iOS 8 提供的應用間和應用跟系統的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source:

This study proposes a method for knowledge distillation (KD) of fine-tuned Large Language Models (LLMs) into smaller, more efficient, and accurate neural networks. We specifically target the challenge of deploying these models on resource-constrained devices. Our methodology involves training the smaller student model (Neural Network) using the prediction probabilities (as soft labels) of the LLM, which serves as a teacher model. This is achieved through a specialized loss function tailored to learn from the LLM's output probabilities, ensuring that the student model closely mimics the teacher's performance. To validate the performance of the KD approach, we utilized a large dataset, 7T, containing 6,684 student-written responses to science questions and three mathematical reasoning datasets with student-written responses graded by human experts. We compared accuracy with state-of-the-art (SOTA) distilled models, TinyBERT, and artificial neural network (ANN) models. Results have shown that the KD approach has 1% and 4% higher scoring accuracy than ANN and TinyBERT and comparable accuracy to the teacher model. Furthermore, the student model size is 0.02M, 10,000 times smaller in parameters and x10 faster in inferencing than the teacher model and TinyBERT, respectively. The significance of this research lies in its potential to make advanced AI technologies accessible in typical educational settings, particularly for automatic scoring.

From the outset, batteries have been the main power source for the Internet of Things (IoT). However, replacing and disposing of billions of dead batteries per year is costly in terms of maintenance and ecologically irresponsible. Since batteries are one of the greatest threats to a sustainable IoT, battery-less devices are the solution to this problem. These devices run on long-lived capacitors charged using various forms of energy harvesting, which results in intermittent on-off device behaviour. In this work, we model this intermittent battery-less behaviour for LoRaWAN devices. This model allows us to characterize the performance with the aim to determine under which conditions a LoRaWAN device can work without batteries, and how its parameters should be configured. Results show that the reliability directly depends on device configurations (i.e., capacitor size, turn-on voltage threshold), application behaviour (i.e., transmission interval, packet size) and environmental conditions (i.e., energy harvesting rate).

Inverse Reinforcement Learning (IRL) is a powerful framework for learning complex behaviors from expert demonstrations. However, it traditionally requires repeatedly solving a computationally expensive reinforcement learning (RL) problem in its inner loop. It is desirable to reduce the exploration burden by leveraging expert demonstrations in the inner-loop RL. As an example, recent work resets the learner to expert states in order to inform the learner of high-reward expert states. However, such an approach is infeasible in the real world. In this work, we consider an alternative approach to speeding up the RL subroutine in IRL: \emph{pessimism}, i.e., staying close to the expert's data distribution, instantiated via the use of offline RL algorithms. We formalize a connection between offline RL and IRL, enabling us to use an arbitrary offline RL algorithm to improve the sample efficiency of IRL. We validate our theory experimentally by demonstrating a strong correlation between the efficacy of an offline RL algorithm and how well it works as part of an IRL procedure. By using a strong offline RL algorithm as part of an IRL procedure, we are able to find policies that match expert performance significantly more efficiently than the prior art.

High-resolution semantic segmentation requires substantial computational resources. Traditional approaches in the field typically downscale the input images before processing and then upscale the low-resolution outputs back to their original dimensions. While this strategy effectively identifies broad regions, it often misses finer details. In this study, we demonstrate that a streamlined model capable of directly producing high-resolution segmentations can match the performance of more complex systems that generate lower-resolution results. By simplifying the network architecture, we enable the processing of images at their native resolution. Our approach leverages a bottom-up information propagation technique across various scales, which we have empirically shown to enhance segmentation accuracy. We have rigorously tested our method using leading-edge semantic segmentation datasets. Specifically, for the Cityscapes dataset, we further boost accuracy by applying the Noisy Student Training technique.

User intentions are typically formalized as evaluation rewards to be maximized when fine-tuning language models (LMs). Existing alignment methods, such as Direct Preference Optimization (DPO), are mainly tailored for pairwise preference data where rewards are implicitly defined rather than explicitly given. In this paper, we introduce a general framework for LM alignment, leveraging Noise Contrastive Estimation (NCE) to bridge the gap in handling reward datasets explicitly annotated with scalar evaluations. Our framework comprises two parallel algorithms, NCA and InfoNCA, both enabling the direct extraction of an LM policy from reward data as well as preference data. Notably, we show that the DPO loss is a special case of our proposed InfoNCA objective under pairwise preference settings, thereby integrating and extending current alignment theories. By contrasting NCA and InfoNCA, we show that InfoNCA and DPO adjust relative likelihood across different responses to a single instruction, while NCA optimizes absolute likelihood for each response. We apply our methods to align a 7B language model with a GPT-4 annotated reward dataset. Experimental results suggest that InfoNCA surpasses the DPO baseline in GPT-4 evaluations, while NCA enjoys better training stability with competitive performance.

The perception that the convergence of biological engineering and artificial intelligence (AI) could enable increased biorisk has recently drawn attention to the governance of biotechnology and artificial intelligence. The 2023 Executive Order, Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence, requires an assessment of how artificial intelligence can increase biorisk. Within this perspective, we present a simplistic framework for evaluating biorisk and demonstrate how this framework falls short in achieving actionable outcomes for a biorisk manager. We then suggest a potential path forward that builds upon existing risk characterization work and justify why characterization efforts of AI-enabled tools for engineering biology is needed.

The Internet of Things (IoT) is becoming a part of everyday life through its various sensing devices that collect valuable information. The huge number of interconnected heterogeneous IoT devices poses immense challenges, and network softwarization techniques are an adequate solution to these concerns. Software Defined Networking (SDN) and Network Function Virtualization (NFV) are two key softwarization techniques that enable the realization of efficient, agile IoT networks, especially when combined with Machine Learning (ML), mainly Federated Learning (FL). Unfortunately, existing solutions do not take advantage of such a combination to strengthen IoT networks in terms of efficiency and scalability. In this paper, we propose a novel architecture to achieve distributed intelligent network softwarization for IoT, in which SDN, NFV, and ML combine forces to enhance IoT constrained networks.

The probabilistic formal verification (PFV) of AI systems is in its infancy. So far, approaches have been limited to ad-hoc algorithms for specific classes of models and/or properties. We propose a unifying framework for the PFV of AI systems based onWeighted Model Integration (WMI), which allows to frame the problem in very general terms. Crucially, this reduction enables the verification of many properties of interest, like fairness, robustness or monotonicity, over a wide range of machine learning models, without making strong distributional assumptions. We support the generality of the approach by solving multiple verification tasks with a single, off-the-shelf WMI solver, then discuss the scalability challenges and research directions related to this promising framework.

The self-rationalising capabilities of LLMs are appealing because the generated explanations can give insights into the plausibility of the predictions. However, how faithful the explanations are to the predictions is questionable, raising the need to explore the patterns behind them further. To this end, we propose a hypothesis-driven statistical framework. We use a Bayesian network to implement a hypothesis about how a task (in our example, natural language inference) is solved, and its internal states are translated into natural language with templates. Those explanations are then compared to LLM-generated free-text explanations using automatic and human evaluations. This allows us to judge how similar the LLM's and the Bayesian network's decision processes are. We demonstrate the usage of our framework with an example hypothesis and two realisations in Bayesian networks. The resulting models do not exhibit a strong similarity to GPT-3.5. We discuss the implications of this as well as the framework's potential to approximate LLM decisions better in future work.

Deep Convolutional Neural Networks (CNNs) are a special type of Neural Networks, which have shown state-of-the-art results on various competitive benchmarks. The powerful learning ability of deep CNN is largely achieved with the use of multiple non-linear feature extraction stages that can automatically learn hierarchical representation from the data. Availability of a large amount of data and improvements in the hardware processing units have accelerated the research in CNNs and recently very interesting deep CNN architectures are reported. The recent race in deep CNN architectures for achieving high performance on the challenging benchmarks has shown that the innovative architectural ideas, as well as parameter optimization, can improve the CNN performance on various vision-related tasks. In this regard, different ideas in the CNN design have been explored such as use of different activation and loss functions, parameter optimization, regularization, and restructuring of processing units. However, the major improvement in representational capacity is achieved by the restructuring of the processing units. Especially, the idea of using a block as a structural unit instead of a layer is gaining substantial appreciation. This survey thus focuses on the intrinsic taxonomy present in the recently reported CNN architectures and consequently, classifies the recent innovations in CNN architectures into seven different categories. These seven categories are based on spatial exploitation, depth, multi-path, width, feature map exploitation, channel boosting and attention. Additionally, it covers the elementary understanding of the CNN components and sheds light on the current challenges and applications of CNNs.

北京阿比特科技有限公司