亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Multiphysics incompressible fluid dynamics simulations play a crucial role in understanding intricate behaviors of many complex engineering systems that involve interactions between solids, fluids, and various phases like liquid and gas. Numerical modeling of these interactions has generated significant research interest in recent decades and has led to the development of open source simulation tools and commercial software products targeting specific applications or general problem classes in computational fluid dynamics. As the demand increases for these simulations to adapt to platform heterogeneity, ensure composability between different physics models, and effectively utilize inheritance within partial differentiation systems, a fundamental reconsideration of numerical solver design becomes imperative. The discussion presented in this paper emphasizes the importance of these considerations and introduces the Flash-X approach as a potential solution. The software design strategies outlined in the article serve as a guide for Flash-X developers, providing insights into complexities associated with performance portability, composability, and sustainable development. These strategies provide a foundation for improving design of both new and existing simulation tools grappling with these challenges. By incorporating the principles outlined in the Flash-X approach, engineers and researchers can enhance the adaptability, efficiency, and overall effectiveness of their numerical solvers in the ever-evolving field of multiphysics simulations.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · 泛函 · 近似 · 正則化項 · 近似誤差 ·
2024 年 2 月 8 日

Natural policy gradient (NPG) methods with entropy regularization achieve impressive empirical success in reinforcement learning problems with large state-action spaces. However, their convergence properties and the impact of entropy regularization remain elusive in the function approximation regime. In this paper, we establish finite-time convergence analyses of entropy-regularized NPG with linear function approximation under softmax parameterization. In particular, we prove that entropy-regularized NPG with averaging satisfies the \emph{persistence of excitation} condition, and achieves a fast convergence rate of $\tilde{O}(1/T)$ up to a function approximation error in regularized Markov decision processes. This convergence result does not require any a priori assumptions on the policies. Furthermore, under mild regularity conditions on the concentrability coefficient and basis vectors, we prove that entropy-regularized NPG exhibits \emph{linear convergence} up to a function approximation error.

The LoRA-finetuning quantization of LLMs has been extensively studied to obtain accurate yet compact LLMs for deployment on resource-constrained hardware. However, existing methods cause the quantized LLM to severely degrade and even fail to benefit from the finetuning of LoRA. This paper proposes a novel IR-QLoRA for pushing quantized LLMs with LoRA to be highly accurate through information retention. The proposed IR-QLoRA mainly relies on two technologies derived from the perspective of unified information: (1) statistics-based Information Calibration Quantization allows the quantized parameters of LLM to retain original information accurately; (2) finetuning-based Information Elastic Connection makes LoRA utilizes elastic representation transformation with diverse information. Comprehensive experiments show that IR-QLoRA can significantly improve accuracy across LLaMA and LLaMA2 families under 2-4 bit-widths, e.g., 4- bit LLaMA-7B achieves 1.4% improvement on MMLU compared with the state-of-the-art methods. The significant performance gain requires only a tiny 0.31% additional time consumption, revealing the satisfactory efficiency of our IRQLoRA. We highlight that IR-QLoRA enjoys excellent versatility, compatible with various frameworks (e.g., NormalFloat and Integer quantization) and brings general accuracy gains. The code is available at //github.com/htqin/ir-qlora.

High-resolution semantic segmentation requires substantial computational resources. Traditional approaches in the field typically downscale the input images before processing and then upscale the low-resolution outputs back to their original dimensions. While this strategy effectively identifies broad regions, it often misses finer details. In this study, we demonstrate that a streamlined model capable of directly producing high-resolution segmentations can match the performance of more complex systems that generate lower-resolution results. By simplifying the network architecture, we enable the processing of images at their native resolution. Our approach leverages a bottom-up information propagation technique across various scales, which we have empirically shown to enhance segmentation accuracy. We have rigorously tested our method using leading-edge semantic segmentation datasets. Specifically, for the Cityscapes dataset, we further boost accuracy by applying the Noisy Student Training technique.

We introduce a data-driven framework to automatically identify interpretable and physically meaningful hyperelastic constitutive models from sparse data. Leveraging symbolic regression, an algorithm based on genetic programming, our approach generates elegant hyperelastic models that achieve accurate data fitting through parsimonious mathematic formulae, while strictly adhering to hyperelasticity constraints such as polyconvexity. Our investigation spans three distinct hyperelastic models -- invariant-based, principal stretch-based, and normal strain-based -- and highlights the versatility of symbolic regression. We validate our new approach using synthetic data from five classic hyperelastic models and experimental data from the human brain to demonstrate algorithmic efficacy. Our results suggest that our symbolic regression robustly discovers accurate models with succinct mathematic expressions in invariant-based, stretch-based, and strain-based scenarios. Strikingly, the strain-based model exhibits superior accuracy, while both stretch- and strain-based models effectively capture the nonlinearity and tension-compression asymmetry inherent to human brain tissue. Polyconvexity examinations affirm the rigor of convexity within the training regime and demonstrate excellent extrapolation capabilities beyond this regime for all three models. However, the stretch-based models raise concerns regarding potential convexity loss under large deformations. Finally, robustness tests on noise-embedded data underscore the reliability of our symbolic regression algorithms. Our study confirms the applicability and accuracy of symbolic regression in the automated discovery of hyperelastic models for the human brain and gives rise to a wide variety of applications in other soft matter systems.

This study investigates the asymptotic dynamics of alternating minimization applied to optimize a bilinear non-convex function with normally distributed covariates. We employ the replica method from statistical physics in a multi-step approach to precisely trace the algorithm's evolution. Our findings indicate that the dynamics can be described effectively by a two--dimensional discrete stochastic process, where each step depends on all previous time steps, revealing a memory dependency in the procedure. The theoretical framework developed in this work is broadly applicable for the analysis of various iterative algorithms, extending beyond the scope of alternating minimization.

Sheaves are mathematical objects consisting of a base which constitutes a topological space and the data associated with each open set thereof, e.g. continuous functions defined on the open sets. Sheaves have originally been used in algebraic topology and logic. Recently, they have also modelled events such as physical experiments and natural language disambiguation processes. We extend the latter models from lexical ambiguities to discourse ambiguities arising from anaphora. To begin, we calculated a new measure of contextuality for a dataset of basic anaphoric discourses, resulting in a higher proportion of contextual models--82.9%--compared to previous work which only yielded 3.17% contextual models. Then, we show how an extension of the natural language processing challenge, known as the Winograd Schema, which involves anaphoric ambiguities can be modelled on the Bell-CHSH scenario with a contextual fraction of 0.096.

In response to the evolving landscape of quantum computing and the escalating vulnerabilities in classical cryptographic systems, our paper introduces a unified cryptographic framework. Rooted in the innovative work of Kuang et al., we leverage two novel primitives: the Quantum Permutation Pad (QPP) for symmetric key encryption and the Homomorphic Polynomial Public Key (HPPK) for Key Encapsulation Mechanism (KEM) and Digital Signatures (DS). Our approach adeptly confronts the challenges posed by quantum advancements. Utilizing the Galois Permutation Group's matrix representations and inheriting its bijective and non-commutative properties, QPP achieves quantum-secure symmetric key encryption, seamlessly extending Shannon's perfect secrecy to both classical and quantum-native systems. Meanwhile, HPPK, free from NP-hard problems, fortifies symmetric encryption for the plain public key. It accomplishes this by concealing the mathematical structure through modular multiplications or arithmetic representations of Galois Permutation Group over hidden rings, harnessing their partial homomorphic properties. This allows for secure computation on encrypted data during secret encapsulations, bolstering the security of the plain public key. The seamless integration of KEM and DS within HPPK cryptography yields compact key, cipher, and signature sizes, demonstrating exceptional performance. This paper organically unifies QPP and HPPK under the Galois Permutation Group, marking a significant advancement in laying the groundwork for quantum-resistant cryptographic protocols. Our contribution propels the development of secure communication systems amid the era of quantum computing.

We introduce a new mean-field ODE and corresponding interacting particle systems (IPS) for sampling from an unnormalized target density. The IPS are gradient-free, available in closed form, and only require the ability to sample from a reference density and compute the (unnormalized) target-to-reference density ratio. The mean-field ODE is obtained by solving a Poisson equation for a velocity field that transports samples along the geometric mixture of the two densities, which is the path of a particular Fisher-Rao gradient flow. We employ a RKHS ansatz for the velocity field, which makes the Poisson equation tractable and enables discretization of the resulting mean-field ODE over finite samples. The mean-field ODE can be additionally be derived from a discrete-time perspective as the limit of successive linearizations of the Monge-Amp\`ere equations within a framework known as sample-driven optimal transport. We introduce a stochastic variant of our approach and demonstrate empirically that our IPS can produce high-quality samples from varied target distributions, outperforming comparable gradient-free particle systems and competitive with gradient-based alternatives.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.

北京阿比特科技有限公司